Administrative supplement - Equipment
行政补充-设备
基本信息
- 批准号:10378986
- 负责人:
- 金额:$ 3.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdministrative SupplementAutomobile DrivingBehaviorBiological Response Modifier TherapyBiologyBlood VesselsCardiovascular DiseasesCell membraneCellsConfocal MicroscopyContractsCustomDNADevelopmentDiseaseEndothelial CellsEndotheliumEquipmentEventExtravasationGene DeliveryIn VitroIntravenousKnowledgeLifeMalignant NeoplasmsMeasuresMechanicsMediatingMethodsMicrobubblesMicrocirculationMolecularNucleic AcidsOpticsPathologicPathway interactionsPermeabilityPhysicsPhysiologyPropertyProteinsResearchSavingsSignal TransductionSiteSmall Interfering RNASpeedTechnologyTestingTherapeuticTimeTranslationsUltrasonic TransducerUltrasonographyexperimental studygene therapyimage guidedin vivoinsightmacromoleculemultidisciplinarynucleic acid deliverynucleic acid-based therapeuticsreal-time imagesresponsesoundtargeted deliveryvibration
项目摘要
Increasing knowledge of the molecular underpinnings of disease is driving a powerful imperative to deliver
agents, such as nucleic acids, to silence expression of pathologic proteins for life-saving treatment of heretofore
hopeless illnesses. Although there are promising developments in strategies to deliver cell membrane
impermeant nucleic acids, such as siRNA, to disease-causing cells, a safe and efficient method for targeted
delivery of these agents has remained elusive. A significant hurdle for gene therapies using vascular delivery is
to circumvent the endothelial barrier. We have been developing a unique technology using intravenously injected
nucleic acid-loaded microbubbles (MB) which are triggered to cavitate (expand and contract) by ultrasound (US),
causing transient permeabilization of the adjacent cell membrane and delivery of the therapeutic carried by the
MBs. The potential of this site-specific, non-invasive delivery method is extraordinary, more so because the MBs
and US transducer also provide capability for simultaneous real time image-guided navigation of therapy. Despite
its promise, the mechanisms underlying the efficacy of ultrasound-triggered MB cavitation (UTMC) as a delivery
platform are poorly understood. Without a sound knowledge of the fundamental mechanisms by which safe and
effective biotherapeutic delivery is effected by UTMC, its ultimate bedside translation is impossible. We
hypothesize that MBs cavitating in the microcirculation impart non-lethal mechanical perturbations on endothelial
cells, leading to signaling events that culminate in endothelial barrier hyperpermeability. We propose in vitro
studies to systematically interrogate mechanistic pathways, followed by in vivo experiments to investigate UTMC
endothelial barrier effects in real time, addressing three Specific Aims: (1) Determine the mechanisms by
which UTMC increases endothelial barrier permeability. We will use transwells coated with endothelial cells
and manipulate candidate pathways to test the hypothesis that UTMC-induced Ca2+ influx increases endothelial
permeability. We will optically measure attendant cellular events using multicolor confocal microscopy, thus
correlating barrier function to cell response;; (2) Determine the relationship between in vivo MB cavitation
behaviors and transendothelial transport of macromolecules (siRNA). We will use a custom ultra-high
speed camera to visualize in vivo US-MB vibrations in the microcirculation to test the hypothesis that MB
cavitation causes quantifiable mechanical events, then derive physical principles governing UTMC-mediated
hyperpermeability;; (3): Determine extravasation pathways and cellular fate of siRNA-loaded MBs during
UTMC in vivo. We will use intravital high-speed multicolor confocal microscopy in cremaster microcirculation to
visualize endothelial barrier properties and siRNA-loaded MB fate. Our multi-disciplinary team unites
physics/acoustics with biology/physiology to derive insights into fundamental physical and cellular mechanisms
underlying UTMC-facilitated gene delivery. Ultimately, our research will define a rational basis for optimization
of this remarkable technology and accelerate the translation of nucleic acid therapeutics to the bedside.
增加对疾病分子基础的了解正在推动实现这一目标的强大必要性
迄今为止用于挽救生命的治疗剂,例如核酸,以沉默病理蛋白的表达
绝望的疾病。 尽管在递送细胞膜的策略方面取得了有希望的进展
核酸(例如 siRNA)对致病细胞的不渗透性,是一种安全有效的靶向方法
这些药剂的交付仍然难以捉摸。 使用血管输送的基因疗法的一个重大障碍是
绕过内皮屏障。 我们一直在开发一种独特的技术,使用静脉注射
通过超声波触发空化(膨胀和收缩)的核酸负载微泡(MB)(美国),
引起邻近细胞膜的短暂透化并输送由细胞携带的治疗剂
MB。 这种针对特定地点的非侵入性传递方法的潜力是非凡的,更重要的是因为 MB
US 换能器还提供同时实时图像引导治疗导航的功能。 尽管
它的承诺,超声波触发 MB 空化 (UTMC) 作为交付的功效背后的机制
人们对平台知之甚少。 如果不了解安全和可靠的基本机制,
有效的生物治疗递送是由 UTMC 实现的,其最终的床边翻译是不可能的。 我们
假设微循环中的 MB 空穴对内皮细胞产生非致命的机械扰动
细胞,导致信号事件,最终导致内皮屏障通透性过高。 我们建议在体外
系统地探究机制途径的研究,随后进行体内实验来调查 UTMC
实时检测内皮屏障效应,解决三个具体目标:(1) 通过以下方式确定机制:
UTMC 增加内皮屏障渗透性。 我们将使用涂有内皮细胞的 Transwell
并操纵候选途径来测试 UTMC 诱导的 Ca2+ 流入增加内皮细胞的假设
渗透性。 我们将使用多色共聚焦显微镜光学测量伴随的细胞事件,因此
将屏障功能与细胞反应相关联;;(2) 确定体内 MB 空化之间的关系
大分子 (siRNA) 的行为和跨内皮转运。 我们将使用定制的超高
测速相机可视化体内 US-MB 微循环中的振动,以测试 MB 的假设
空化引起可量化的机械事件,然后导出控制 UTMC 介导的物理原理
通透性过高;;(3):确定装载 siRNA 的 MB 的外渗途径和细胞命运
UTMC 在体内。 我们将在提睾微循环中使用活体高速多色共焦显微镜来
可视化内皮屏障特性和装载 siRNA 的 MB 命运。 我们的多学科团队团结一致
物理学/声学与生物学/生理学相结合,深入了解基本物理和细胞机制
底层 UTMC 促进的基因传递。 最终,我们的研究将为优化定义合理的基础
这项非凡的技术并加速核酸疗法向床边的转化。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex Highways on the Translational Roadmap for Therapeutic Ultrasound-Targeted Microbubble Cavitation: Where Are We Now?
超声靶向微泡空化治疗转化路线图上的复杂高速公路:我们现在在哪里?
- DOI:10.1016/j.jcmg.2019.08.010
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Villanueva,FlordelizaS;Chen,Xucai
- 通讯作者:Chen,Xucai
A multicellular brain spheroid model for studying the mechanisms and bioeffects of ultrasound-enhanced drug penetration beyond the blood‒brain barrier.
- DOI:10.1038/s41598-023-50203-3
- 发表时间:2024-01-22
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Ultrafast Microscopy Imaging of Acoustic Cluster Therapy Bubbles: Activation and Oscillation.
声簇治疗气泡的超快显微成像:激活和振荡。
- DOI:10.1016/j.ultrasmedbio.2022.05.009
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:vanWamel,Annemieke;Mühlenpfordt,Melina;Hansen,Rune;Healey,Andrew;Villanueva,FlordelizaS;Kotopoulis,Spiros;Davies,CatharinadeLange;Chen,Xucai
- 通讯作者:Chen,Xucai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Flordeliza S Villanueva其他文献
1118-79 Drag reduction by polymer infusion: A new mechanism to enhance microcirculatory perfusion for the treatment of ischemia
- DOI:
10.1016/s0735-1097(04)91227-2 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
John J Pacella;Erxiong Lu;Joan Gretton;David Fischer;Marina V Kameneva;Flordeliza S Villanueva - 通讯作者:
Flordeliza S Villanueva
Flordeliza S Villanueva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Flordeliza S Villanueva', 18)}}的其他基金
Biological and Physical Mechanisms of ultrasound/microbubble-mediated therapeutic gene delivery across the endothelial barrier
超声/微泡介导的治疗基因跨内皮屏障传递的生物和物理机制
- 批准号:
10220968 - 财政年份:2018
- 资助金额:
$ 3.57万 - 项目类别:
Biological and Physical Mechanisms of ultrasound/microbubble-mediated therapeutic gene delivery across the endothelial barrier
超声/微泡介导的治疗基因跨内皮屏障传递的生物和物理机制
- 批准号:
9980415 - 财政年份:2018
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10382469 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10269077 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10633063 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
9264011 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8664844 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
Targeted theranostic microbubble vectors for transcription factor decoy delivery
用于转录因子诱饵递送的靶向治疗诊断微泡载体
- 批准号:
8528523 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8501449 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8857130 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3.57万 - 项目类别:
Research Grant














{{item.name}}会员




