Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks

利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化

基本信息

  • 批准号:
    10710055
  • 负责人:
  • 金额:
    $ 46.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-26 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Comparative functional genomics offers a powerful framework to study the molecular underpinnings of species- specific traits. Gene regulatory networks (GRNs) which control precise context-specific expression patterns of genes play a significant role in diversifying phenotypes across species. These networks are central to cell type specific function and are often disrupted in many diseases. However, comparison of gene regulatory networks across species has been challenging because of the lack of sufficient number of samples across matched biological contexts. Single cell omic technologies, such as single cell RNA-seq (scRNA-seq) and ATAC-seq (scATAC-seq), are revolutionizing biology enabling researchers to profile the activity of nearly all genomic regions in each individual cell. Single cell omic studies are quickly expanding to multiple species providing unprecedented opportunities to define cell types and their underlying gene regulatory networks and study their evolution. However, computational methods for defining cell-types and cell-specific GRNs across species are in their infancy. In particular, samples in a multi-species scRNA-seq dataset are related by a phylogeny, however, existing integration approaches do not model these relationships. Furthermore, existing approaches are restricted to one-to-one relationships across species, which makes it difficult to study some of the major sources of evolutionary innovation (e.g., duplications) in cell type identity. In this project, we will develop novel computational methods to tackle two problems: (a) defining cell types and their lineage relationships across species from scRNA-seq and scATAC-seq datasets, (b) inference and comparative analysis of cell type-specific GRNs across species from single cell RNA-seq and ATAC-seq data. Our tools will be based on machine learning methods, namely, probabilistic graphical models, multi-task and multi-view learning, and matrix factorization, that offer principled frameworks to integrate information across species. We will first test these tools in human and mouse scRNA-seq/ATAC-seq datasets from our collaborators and published studies. We will demonstrate the full potential of our tools on a novel multi-species kidney scRNA-seq/scATAC-seq dataset that we will collect to study normal kidney function as well as compensatory renal growth, which controls how one kidney recovers after surgical removal of another kidney. We will identify conserved and diverged regulatory networks that will be used to prioritize sequence and protein regulators for validation studies with CRISPR and siRNA. Our analysis will reveal key insights into how GRNs evolve across species and how they establish different cell types. Our approaches and novel datasets will provide critical insight into the molecular programs governing kidney structure and function that could have a significant clinical impact for patients with kidney disease. Our methods will constitute a suite of broadly applicable tools that can shed insight into principles of gene regulation and cell fate specification that will be applicable to single cell datasets from diverse multi-cellular systems.
项目摘要 比较功能基因组学为研究物种的分子基础提供了一个强有力的框架- 具体的特征。基因调控网络(GRNs)控制精确的上下文特异性表达模式, 基因在使物种的表型多样化方面发挥着重要作用。这些网络是细胞类型的核心 它具有特定的功能,在许多疾病中经常被破坏。然而,基因调控网络的比较 由于缺乏足够数量的样本, 生物学背景。单细胞组学技术,例如单细胞RNA-seq(scRNA-seq)和ATAC-seq (scATAC-seq),正在彻底改变生物学,使研究人员能够分析几乎所有基因组的活动, 在每个细胞中。单细胞组学研究正在迅速扩展到多个物种, 前所未有的机会来定义细胞类型及其潜在的基因调控网络,并研究其 进化然而,用于定义跨物种的细胞类型和细胞特异性GRNs的计算方法是有限的。 在他们的婴儿期。特别地,多物种scRNA-seq数据集中的样品通过同源性相关,然而, 现有的集成方法没有对这些关系进行建模。此外,现有的方法 仅限于物种间的一对一关系,这使得研究一些主要来源变得困难。 进化创新(例如,重复)在细胞类型身份中。在这个项目中,我们将开发新的 计算方法来解决两个问题:(a)定义细胞类型和它们的谱系关系, (B)细胞类型特异性的推断和比较分析 来自单细胞RNA-seq和ATAC-seq数据的跨物种GRN。我们的工具将基于机器学习 方法,即概率图形模型,多任务和多视图学习,以及矩阵分解, 提供原则性框架,整合跨物种信息。我们将首先在人类身上测试这些工具, 小鼠scRNA-seq/ATAC-seq数据集来自我们的合作者和已发表的研究。我们将展示 我们的工具在新的多物种肾脏scRNA-seq/scATAC-seq数据集上的全部潜力,我们将收集这些数据集, 研究正常的肾功能以及控制一个肾如何恢复的代偿性肾生长 手术切除了另一个肾脏我们将确定保守和分歧的监管网络, 用于优先排序序列和蛋白质调节剂,用于CRISPR和siRNA的验证研究。我们的分析 将揭示GRNs如何在物种间进化以及它们如何建立不同的细胞类型的关键见解。我们 方法和新的数据集将提供关键的洞察分子程序管理肾脏 结构和功能,可能对肾脏疾病患者产生重大临床影响。我们的方法 将构成一套广泛适用的工具,可以深入了解基因调控和细胞增殖的原理。 这将适用于来自不同多细胞系统的单细胞数据集。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting patient-specific enhancer-promoter interactions.
预测患者特异性增强子促进剂的相互作用。
  • DOI:
    10.1016/j.crmeth.2023.100594
  • 发表时间:
    2023-09-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sushmita Roy其他文献

Sushmita Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sushmita Roy', 18)}}的其他基金

Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
  • 批准号:
    10669280
  • 财政年份:
    2022
  • 资助金额:
    $ 46.48万
  • 项目类别:
Leveraging multi-species single cell omic datasets to study the evolution of cell type-specific gene regulatory networks
利用多物种单细胞组学数据集研究细胞类型特异性基因调控网络的进化
  • 批准号:
    10595349
  • 财政年份:
    2022
  • 资助金额:
    $ 46.48万
  • 项目类别:
Defining gene regulatory networks controlling cell fate
定义控制细胞命运的基因调控网络
  • 批准号:
    10530982
  • 财政年份:
    2022
  • 资助金额:
    $ 46.48万
  • 项目类别:
Computational approaches for comparative regulatory genomics to decipher long-range gene regulation
比较调控基因组学的计算方法来破译远程基因调控
  • 批准号:
    10208923
  • 财政年份:
    2018
  • 资助金额:
    $ 46.48万
  • 项目类别:
Computational Inference of Regulatory Network Dynamics on Cell Lineages
细胞谱系调控网络动力学的计算推断
  • 批准号:
    9979901
  • 财政年份:
    2016
  • 资助金额:
    $ 46.48万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 46.48万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了