Digital Monitoring of Agitation for Short-Term Suicide Risk Prediction
短期自杀风险预测的躁动数字监测
基本信息
- 批准号:9981035
- 负责人:
- 金额:$ 19.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-19 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAcuteAddressAdultAgitationAlcohol or Other Drugs useAmericanAnxietyAreaArousalAttentionAwardBehavioralBiological MarkersCause of DeathCellular PhoneCessation of lifeClinicalClinical assessmentsConsensusDSM-VDataData AnalysesDevelopmentDiagnosisDistalEcological momentary assessmentFeelingFeeling suicidalFoundationsFundingFutureGoldGrantGuide preventionHospitalsHourIndividualInpatientsInstitutesInterventionJordanKnowledgeLeftMachine LearningManuscriptsMapsMassachusettsMeasuresMentorsMentorshipMeta-AnalysisMethodologyMethodsMonitorMotorMotor ActivityNational Institute of Mental HealthPatient Self-ReportPatientsPositioning AttributePreventionProtocols documentationPublic HealthPublic Health SchoolsPublishingReportingResearchResearch PersonnelResearch TrainingResolutionRiskRisk AssessmentRisk FactorsRoleSECTM1 geneSamplingSelf-Injurious BehaviorSuicideSuicide attemptSuicide preventionTechnologyTestingTimeTrainingUnited StatesUnited States National Institutes of HealthWorkWristbasebehavioral studycareerclinical biomarkersdemographicsdiariesdigitalhandheld mobile devicehigh riskimprovedmultidisciplinarymultilevel analysisnegative affectnovelpatient oriented researchpredictive modelingstandard measuresuicidalsuicidal behaviorsuicidal morbiditysuicidal risksuicide ratewearable sensor technology
项目摘要
Suicide is a prevalent and burdensome public health problem that warrants immediate attention. As the tenth
leading cause of death in the United States, suicide claims the lives of more than 44,000 Americans each year.
There is an urgent need to identify objective and clinically informative markers of imminent risk for suicidal
behavior. Agitation, defined in DSM-5 as excessive motor activity associated with a feeling of inner tension, is
listed as a warning sign for suicide by leading organizations and in widely used risk assessment protocols. Yet,
prior research on the association between agitation and suicide has key methodological limitations (including
related to the operationalization of agitation), which has resulted in minimal empirical evidence to support
agitation as a proximal risk factor for suicide. Addressing this gap in knowledge has the potential for significant
impact, including informing both the clinical assessment of suicide risk and the development of just-in-time
interventions for detecting and responding to acute suicide risk. This project will overcome the limitations of
prior suicide risk factor research by assessing multiple behavioral (motor activity and vocal features [e.g.,
volume, speaking rate, pitch]) and subjective components of agitation and suicidal thoughts and behaviors in a
sample at elevated risk for suicide over a short, high-risk period. We will test the hypotheses that (1) objectively
measured real-time indicators of agitation correlate with both momentary subjective ratings and validated, gold
standard measures of agitation, and (2) both subjective and objective indicators of agitation improve prediction
of short-term increases in suicide ideation, plan, and attempt above and beyond other distal and proximal risk
factors. We propose to collect high-resolution self-report (e.g., ecological momentary assessment) and passive
(e.g., accelerometer) data on agitation using smartphones and wearable sensors from psychiatric inpatients
admitted for suicide ideation or attempt during inpatient treatment and the four weeks after discharge. Multi-
level modeling and machine learning approaches will be implemented to examine (1) associations between
objective and subjective real-time indicators of agitation and validated measures of agitation, and (2) the
degree to which real-time indicators of agitation predict momentary fluctuations in suicidal ideation and suicide
plan and attempt above and beyond other distal and proximal risk factors. The scientific aims of this study map
onto the candidate’s training in three primary areas: (1) digital monitoring of high-risk patients, (2) advanced
longitudinal multivariate data analysis, and (3) identification of behavioral and vocal biomarkers. The
candidate’s training plan includes mentorship from Dr. Matthew Nock (primary mentor), Dr. Jordan Smoller (co-
mentor), Dr. Maurizio Fava (co-mentor), and Drs. Rosalind Picard, Evan Kleiman, and Thomas Quatieri
(consultants), as well as quantitative coursework at the Harvard School of Public Health and Massachusetts
Institute of Technology. This mentored five-year award will propel the candidate to an independent patient-
oriented research career focused on using scalable methods to advance suicide prediction and prevention.
自杀是一个普遍和沉重的公共卫生问题,值得立即关注。作为第十
自杀是美国人的主要死因,每年有44,000多人死于自杀。
目前迫切需要确定客观和临床信息的标志物迫在眉睫的风险自杀
行为躁动,在DSM-5中定义为与内心紧张感相关的过度运动活动,
被主要组织和广泛使用的风险评估协议列为自杀的警告信号。然而,
先前关于激越与自杀之间关系的研究存在关键的方法学局限性(包括
与鼓动的操作化有关),这导致了最少的经验证据来支持
激动是自杀的近端危险因素。解决这一知识差距有可能产生重大影响
影响,包括告知自杀风险的临床评估和及时
检测和应对急性自杀风险的干预措施该项目将克服
通过评估多种行为(运动活动和声音特征[例如,
音量,语速,音高])和主观成分的激动和自杀的想法和行为,在一个
样本在短期内自杀风险高,高风险时期。我们将测试假设(1)客观地
测量的实时指标与瞬时主观评级和验证,黄金
焦虑的标准测量,以及(2)焦虑的主观和客观指标都改善了预测
自杀意念、计划和企图的短期增加高于其他远端和近端风险
因素我们建议收集高分辨率的自我报告(例如,生态瞬时评估)和被动
(e.g.,使用智能手机和可穿戴传感器从精神病住院患者获得的关于躁动的数据
在住院治疗期间和出院后四周内因自杀意念或企图而入院。多重
将实施水平建模和机器学习方法,以检查(1)
躁动的客观和主观实时指标以及躁动的有效测量,以及(2)
焦虑的实时指标预测自杀意念和自杀的瞬时波动的程度
计划和尝试超越其他远端和近端风险因素。这项研究的科学目的是
在三个主要领域的候选人的培训:(1)高风险患者的数字监控,(2)先进的
纵向多变量数据分析,以及(3)行为和声音生物标志物的鉴定。的
候选人的培训计划包括马修·诺克博士(主要导师),乔丹·斯莫勒博士(共同导师),
导师)、Maurizio Fava博士(共同导师)和Rosalind Picard博士、Evan Kleiman博士和托马斯Quatieri博士
(顾问),以及哈佛公共卫生学院和马萨诸塞州的定量课程
理工学院这个为期五年的指导奖将推动候选人成为一个独立的病人-
导向的研究职业生涯侧重于使用可扩展的方法来推进自杀预测和预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kate H. Bentley其他文献
Substance Use, Suicidal Thoughts, and Psychiatric Comorbidities Among High School Students.
高中生的药物使用、自杀念头和精神合并症。
- DOI:
10.1001/jamapediatrics.2023.6263 - 发表时间:
2024 - 期刊:
- 影响因子:26.1
- 作者:
B. Tervo;Jodi M Gilman;A. E. Evins;Kate H. Bentley;M. K. Nock;J. W. Smoller;R. Schuster - 通讯作者:
R. Schuster
Perceived Control and Vulnerability to Anxiety Disorders: A Meta-analytic Review
- DOI:
10.1007/s10608-014-9624-x - 发表时间:
2014-06-13 - 期刊:
- 影响因子:2.000
- 作者:
Matthew W. Gallagher;Kate H. Bentley;David H. Barlow - 通讯作者:
David H. Barlow
Kate H. Bentley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kate H. Bentley', 18)}}的其他基金
Digital Monitoring of Agitation for Short-Term Suicide Risk Prediction
短期自杀风险预测的躁动数字监测
- 批准号:
9806314 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Digital Monitoring of Agitation for Short-Term Suicide Risk Prediction
短期自杀风险预测的躁动数字监测
- 批准号:
10374963 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Digital Monitoring of Agitation for Short-Term Suicide Risk Prediction
短期自杀风险预测的躁动数字监测
- 批准号:
10449205 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Exploring Two Emotion-Focused Treatment Modules in Non-Suicidal Self-Injury
探索非自杀性自伤的两种以情绪为中心的治疗模块
- 批准号:
8654263 - 财政年份:2013
- 资助金额:
$ 19.89万 - 项目类别:
Exploring Two Emotion-Focused Treatment Modules in Non-Suicidal Self-Injury
探索非自杀性自伤的两种以情绪为中心的治疗模块
- 批准号:
8525989 - 财政年份:2013
- 资助金额:
$ 19.89万 - 项目类别:
Exploring Two Emotion-Focused Treatment Modules in Non-Suicidal Self-Injury
探索非自杀性自伤的两种以情绪为中心的治疗模块
- 批准号:
8820836 - 财政年份:2013
- 资助金额:
$ 19.89万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 19.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 19.89万 - 项目类别:
Operating Grants