Advanced Modeling Techniques for Brain Imaging Data with PET
使用 PET 进行脑成像数据的先进建模技术
基本信息
- 批准号:9980905
- 负责人:
- 金额:$ 36.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-17 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsAlzheimer&aposs DiseaseAmyloid beta-ProteinAnxiety DisordersBindingBiologicalBiological ProcessBipolar DisorderBloodBrainBrain imagingCategoriesClinical ResearchCommunitiesComplexComputer softwareDNADataData AnalysesDepressed moodDiagnosticDiseaseHumanImageIndividualKineticsMeasurementMeasuresMental DepressionMethodologyMethodsModelingOutcome MeasurePatientsPatternPopulationPositron-Emission TomographyPost-Traumatic Stress DisordersProceduresProcessProteinsPsyche structureResearchSchizophreniaSerotonergic SystemStatistical Data InterpretationStructureTechniquesTestingTimeTraceranalytical toolbaseburden of illnessclinical applicationcostdata modelingdensityflexibilityimprovedinterestkinetic modelmethod developmentneuropsychiatric disorderneuropsychiatryradiotracerreceptor densitysugarsuicide attemptertooltreatment responsevirtual
项目摘要
Summary
Mental and neuropsychiatric illnesses (including depression, Alzheimer's Disease, and many others) will affect
roughly 20% of the population sometime during their lifetimes. By some measurements these illnesses represent
the leading category of disease burden worldwide. Positron Emission Tomography (PET) of the brain has become
an invaluable research tool for studying such illnesses because it allows quantification of the density of various
molecules throughout the brain. In the current state of the art in the analysis of PET imaging data, there are two
major drawbacks. The first is that analysis is always done as a “two-stage” process: Stage 1 consists of modeling
the PET data over time to get a single (scalar) estimate of receptor density, either for each voxel or for each of one
or more regions of interest. Subsequently, in Stage 2 these estimates are effectively regarded as the observed data,
and statistical analysis involves comparing these estimates across individuals, between diagnostic groups, etc.
This is an inefficient use of data and it does not allow good precision when investigating some subtle systematic
effects. The second major drawback is that the field relies almost exclusively on parametric models. The basic
model for PET data in a voxel or ROI is a kinetic model that relies on some fairly strong assumptions about the
biological processes that, while they are often reasonable approximations to the truth in some instances, are often
thought to be violated. By relying on principles of functional data analysis (FDA), we can open up a powerful new
analysis structure for investigating differences among individuals, among groups, and for making individual-
level predictions (e.g., response to treatment). This project will undertake the following three aims. 1. To develop
methodology based on parametric models that combines both Stage 1 and Stage 2 into a single analysis process.
This will allow for much more refined analysis that can look for differences between groups in individual kinetic
rate parameters, rather than relying only on aggregate outcome measures. 2. To develop FDA-based tools for
comparing PET imaging data across subjects, across groups, etc. This will require new analysis methods since the
relevant functional data are not observed directly but can only be estimated using some form of nonparametric
deconvolution algorithm of the observed PET data over time. 3. To incorporate recent advances made by our
group and others, in the contexts of both the parametric and the nonparametric approaches, to the situation in
which blood data and/or a “reference region” is not available. Aim 1 is intended for PET radiotracers in which
parametric models exist and provide a reasonable fit for the data. Aim 2 is intended both for tracers not described
well by usual parametric models and also as supplementary nonparametric analysis. Aim 3 will extend the reach
of these methods and widen the potential application of PET imaging. These new advances have the potential to
greatly enhance our understanding of the biological underpinnings of many neuropsychiatric diseases as well as
response to treatment.
总结
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneous multifactor Bayesian analysis (SiMBA) of PET time activity curve data.
- DOI:10.1016/j.neuroimage.2022.119195
- 发表时间:2022-08-01
- 期刊:
- 影响因子:5.7
- 作者:Matheson, Granville J.;Ogden, R. Todd
- 通讯作者:Ogden, R. Todd
Parametric and non-parametric Poisson regression for modelling of the arterial input function in positron emission tomography.
- DOI:10.1186/s40658-023-00591-2
- 发表时间:2023-11-21
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Permutation-Based Inference for Function-on-Scalar Regression With an Application in PET Brain Imaging.
基于排列的标量函数回归推理及其在 PET 脑成像中的应用。
- DOI:10.1080/10485252.2023.2206926
- 发表时间:2023
- 期刊:
- 影响因子:1.2
- 作者:Shieh,Denise;Ogden,RTodd
- 通讯作者:Ogden,RTodd
Inference in functional mixed regression models with applications to Positron Emission Tomography imaging data.
功能混合回归模型的推理及其在正电子发射断层扫描成像数据中的应用。
- DOI:10.1002/sim.9087
- 发表时间:2021
- 期刊:
- 影响因子:2
- 作者:Shi,Baoyi;Ogden,RTodd
- 通讯作者:Ogden,RTodd
Multivariate analysis of PET pharmacokinetic parameters improves inferential efficiency.
- DOI:10.1186/s40658-023-00537-8
- 发表时间:2023-03-13
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TODD OGDEN其他文献
TODD OGDEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TODD OGDEN', 18)}}的其他基金
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
8917367 - 财政年份:2014
- 资助金额:
$ 36.02万 - 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
- 批准号:
10207368 - 财政年份:2013
- 资助金额:
$ 36.02万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
8605258 - 财政年份:2013
- 资助金额:
$ 36.02万 - 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
- 批准号:
10408798 - 财政年份:2013
- 资助金额:
$ 36.02万 - 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
- 批准号:
7899424 - 财政年份:2010
- 资助金额:
$ 36.02万 - 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
- 批准号:
8096704 - 财政年份:2010
- 资助金额:
$ 36.02万 - 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
- 批准号:
8246500 - 财政年份:2010
- 资助金额:
$ 36.02万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
9099972 - 财政年份:
- 资助金额:
$ 36.02万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
8704228 - 财政年份:
- 资助金额:
$ 36.02万 - 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
- 批准号:
9490063 - 财政年份:
- 资助金额:
$ 36.02万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 36.02万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 36.02万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 36.02万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 36.02万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 36.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 36.02万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 36.02万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 36.02万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 36.02万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 36.02万 - 项目类别:
Miscellaneous Programs