Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
基本信息
- 批准号:8246500
- 负责人:
- 金额:$ 21.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AftercareAlgorithmsAlzheimer&aposs DiseaseAreaBiologicalBrainBrain imagingCategoriesClinicalComputer softwareConfidence IntervalsDataData SetDevelopmentDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingDimensionsDiseaseFunctional Magnetic Resonance ImagingFunctional disorderFutureGeneticGoalsImageImage AnalysisImaging technologyIndividualInvestigationLinear ModelsLiteratureMajor Depressive DisorderMapsMeasuresMedicalMedicineMental DepressionMethodologyMethodsModelingOutcomePatientsPatternPhysiologicalPositron-Emission TomographyProteinsPsychiatryResearch PersonnelRoleSenile PlaquesSensory ReceptorsSeveritiesSignal TransductionSimulateStatistical ModelsSuicide attemptSymptomsSystemTechnologyTestingThree-Dimensional ImagingTreatment outcomeWorkbaseclinically relevantcognitive functioncomparison groupdensityimaging modalityimprovedinsightneuropsychiatrypublic health relevanceresponsesexstatisticstheoriestooltwo-dimensionaluser friendly software
项目摘要
DESCRIPTION (provided by applicant): Brain imaging and other imaging technologies have provided powerful tools for researchers in psychiatry and other medical fields. The ability to measure the density and distribution of various proteins throughout the brain using positron emission tomography (PET) and to determine regional brain function using functional magnetic resonance imaging has yielded important insights as to the physiological basis of major depressive disorder (MDD), Alzheimer's disease (AD), and other neuropsychiatric illnesses. The use of this technology has led to new under- standings of the pathophysiology of such illnesses including, for instance, patterns of differences between normal controls and subjects suffering from MDD. Group-level analysis of imaging data is typically performed using methodology such as Statistical Parametric Mapping (SPM) in which a statistical model is fit separately to each voxel of the co-registered images. A test statistic is computed for each voxel, regarding the imaging data as the "response" variable and the patient-specific information (treatment group, sex, etc.) as predictors. We propose to develop models that reverse the roles of these variables - i.e., to use images as predictors and variables such as response to treatment as outcomes. The primary objectives of this proposal are: 1. to develop methodology for fitting models with two-dimensional and three-dimensional images as predictors and for inference on the estimated model parameters following two general approaches, one based on a spline representation of images and one based on a wavelet decomposition, both involving computationally intensive algorithms for dimension reduction; 2. to validate the methodology by application to simulated data sets and in two real-data situations (one with PET images of the serotonergic system in an MDD study and one with PET images of amyloid plaques in an AD study); 3. to create and make available software for fitting such models. In addition to advances in statistical methodology, this will enable researchers to better understand which areas of the brain are most predictive of various outcomes.
PUBLIC HEALTH RELEVANCE: We propose to develop statistical models in which images (in combination with appropriate clinical or biological covariates) serve as predictors of scalar outcome variables. Potential applications include using brain images as predictors of outcomes such as response to a particular treatment for depression, development of Alzheimer's disease, or making a suicide attempt. Once developed and validated, this methodology could be applied to data from any imaging modality, including structural and functional magnetic resonance imaging and diffusion tensor imaging.
描述(由申请人提供):脑成像和其他成像技术为精神病学和其他医学领域的研究人员提供了强大的工具。使用正电子发射断层扫描(PET)测量整个大脑中各种蛋白质的密度和分布以及使用功能性磁共振成像确定局部脑功能的能力已经产生了关于重度抑郁症(MDD),阿尔茨海默病(AD)和其他神经精神疾病的生理基础的重要见解。该技术的使用导致了对这些疾病的病理生理学的新理解,包括例如正常对照和患有MDD的受试者之间的差异模式。 成像数据的组级分析通常使用诸如统计参数映射(SPM)的方法来执行,其中统计模型被单独地拟合到共同配准的图像的每个体素。针对每个体素计算检验统计量,将成像数据视为“响应”变量,并将患者特定信息(治疗组、性别等)作为预测者。我们建议开发一些模型来颠倒这些变量的作用,即,使用图像作为预测因子,并使用诸如对治疗的反应等变量作为结果。 本提案的主要目标是:1.开发用于以二维和三维图像作为预测因子拟合模型的方法,以及用于按照两种一般方法对估计的模型参数进行推断的方法,一种基于图像的样条表示,一种基于小波分解,两者都涉及用于降维的计算密集型算法; 2.通过应用于模拟数据集和两种真实数据情况(一种是MDD研究中的β-肾上腺素能系统的PET图像,另一种是AD研究中的淀粉样斑块的PET图像)来验证该方法; 3.创建并提供用于拟合此类模型的软件。除了统计方法的进步,这将使研究人员能够更好地了解大脑的哪些区域最能预测各种结果。
公共卫生相关性:我们建议开发统计模型,其中图像(结合适当的临床或生物学协变量)作为标量结果变量的预测因子。潜在的应用包括使用大脑图像作为结果的预测因子,例如对抑郁症特定治疗的反应,阿尔茨海默病的发展或自杀企图。一旦开发和验证,这种方法可以应用于任何成像模式的数据,包括结构和功能磁共振成像和扩散张量成像。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WAVELET-DOMAIN REGRESSION AND PREDICTIVE INFERENCE IN PSYCHIATRIC NEUROIMAGING.
- DOI:10.1214/15-aoas829
- 发表时间:2015-06
- 期刊:
- 影响因子:0
- 作者:Reiss PT;Huo L;Zhao Y;Kelly C;Ogden RT
- 通讯作者:Ogden RT
Massively parallel nonparametric regression, with an application to developmental brain mapping.
大规模并行非参数回归,应用于发育性大脑绘图。
- DOI:10.1080/10618600.2012.733549
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Reiss,PhilipT;Huang,Lei;Chen,Yin-Hsiu;Huo,Lan;Tarpey,Thaddeus;Mennes,Maarten
- 通讯作者:Mennes,Maarten
Wavelet-Based Scalar-on-Function Finite Mixture Regression Models.
- DOI:10.1016/j.csda.2014.11.017
- 发表时间:2016-01-01
- 期刊:
- 影响因子:1.8
- 作者:Ciarleglio A;Ogden RT
- 通讯作者:Ogden RT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TODD OGDEN其他文献
TODD OGDEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TODD OGDEN', 18)}}的其他基金
Advanced Modeling Techniques for Brain Imaging Data with PET
使用 PET 进行脑成像数据的先进建模技术
- 批准号:
9980905 - 财政年份:2017
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
8917367 - 财政年份:2014
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
- 批准号:
10207368 - 财政年份:2013
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
- 批准号:
10408798 - 财政年份:2013
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
8605258 - 财政年份:2013
- 资助金额:
$ 21.05万 - 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
- 批准号:
7899424 - 财政年份:2010
- 资助金额:
$ 21.05万 - 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
- 批准号:
8096704 - 财政年份:2010
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
9099972 - 财政年份:
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
- 批准号:
9490063 - 财政年份:
- 资助金额:
$ 21.05万 - 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
- 批准号:
8704228 - 财政年份:
- 资助金额:
$ 21.05万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 21.05万 - 项目类别:
Continuing Grant