Statistical Models with High-Dimensional Predictors

具有高维预测变量的统计模型

基本信息

项目摘要

Project 6 involves developing statistical methodology that will be applicable to many of the very high dimensional datasets that are being gathered as part of the Conte Center. In particular, we will focus on models with single outcome variables and very high-dimensional predictors, e.g., using gene expression data to discriminate between suicide attempters and depressed non attempters, or using brain imaging data to predict a patient's response to treatment for depression. This methodology will employ powerful newly developing statistical concepts and tools including functional data analytic methods, machine learning techniques, and prescreening algorithms. Emphasis will be on developing models that can both achieve accurate predictions and provide stable interpretable models, allowing for a deeper understanding of the biological basis of suicidal behavior and mental illness. The project involves development of appropriate methodology, application both to existing datasets and to those that will be gathered as part of the Conte Center, and comparison among the various modeling strategies using both simulation studies and real data validations.
项目6涉及发展统计方法,将适用于许多非常高的

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TODD OGDEN其他文献

TODD OGDEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TODD OGDEN', 18)}}的其他基金

Advanced Modeling Techniques for Brain Imaging Data with PET
使用 PET 进行脑成像数据的先进建模技术
  • 批准号:
    9980905
  • 财政年份:
    2017
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
  • 批准号:
    8917367
  • 财政年份:
    2014
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
  • 批准号:
    10207368
  • 财政年份:
    2013
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
  • 批准号:
    10408798
  • 财政年份:
    2013
  • 资助金额:
    $ 16.3万
  • 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
  • 批准号:
    7899424
  • 财政年份:
    2010
  • 资助金额:
    $ 16.3万
  • 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
  • 批准号:
    8096704
  • 财政年份:
    2010
  • 资助金额:
    $ 16.3万
  • 项目类别:
Functional Regress Models with Application in Brain Imaging Studies
功能回归模型在脑成像研究中的应用
  • 批准号:
    8246500
  • 财政年份:
    2010
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
  • 批准号:
    9099972
  • 财政年份:
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Models with High-Dimensional Predictors
具有高维预测变量的统计模型
  • 批准号:
    8704228
  • 财政年份:
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Models of Suicidal Behavior and Brain Biology Using Large Data Sets
使用大数据集的自杀行为和脑生物学的统计模型
  • 批准号:
    9490063
  • 财政年份:
  • 资助金额:
    $ 16.3万
  • 项目类别:

相似海外基金

CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
  • 批准号:
    2339373
  • 财政年份:
    2024
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2021
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2019
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
  • 批准号:
    2278799
  • 财政年份:
    2019
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
  • 批准号:
    2019967
  • 财政年份:
    2019
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2018
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2017
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
  • 批准号:
    RGPIN-2016-03661
  • 财政年份:
    2016
  • 资助金额:
    $ 16.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了