The Role of Chromatin in Metabolic Homeostasis
染色质在代谢稳态中的作用
基本信息
- 批准号:9983876
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementBiologicalBiological ModelsCardiovascular DiseasesCell DeathCell divisionCell physiologyCellsCessation of lifeChromatinChromatin Remodeling FactorDataDefectDevelopmentDiabetes MellitusDiseaseEmbryonic DevelopmentEnergy MetabolismEnvironmentEpigenetic ProcessEventFailureGene ExpressionGene Expression RegulationGenetic TranscriptionGoalsGrowthHeart DiseasesHomeostasisKnowledgeLeadLinkMalignant NeoplasmsMetabolicMetabolic PathwayMetabolic dysfunctionMusNatureNucleosomesNutrientOrganismOutcomeOxygen ConsumptionPathologyPathway interactionsPositioning AttributeProliferatingPublic HealthRegulationResearchRoleSignal PathwayTissuesYeastscell growthchromatin modificationchromatin remodelingdetection of nutrientepigenetic regulationepigenetic therapyfitnessflexibilityinnovationmicroorganismnovelprogramsresponse
项目摘要
The coordination of cellular function with the environment is essential for adaptation and survival. For
example, cells have remarkable ability to sense diverse (i.e. nutrient-rich or -limiting) environments and
reprogram their energy metabolism and proliferative capacity accordingly. Dynamic nutrient environments are
ubiquitous throughout nature and include competitive growth environments of proliferating microorganisms and
tissue niches in multicellular organisms. Failure to adapt can lead to cell death, developmental defects, and
disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including
cancer, cardiovascular disease, and diabetes, which together account for two-thirds of all deaths in the U.S.
Adaptive cellular responses are often achieved by rapid inducible changes in gene expression
programs. An ideal mechanism to achieve this is through modification of chromatin. Despite this knowledge,
the mechanisms by which chromatin modification contributes to metabolic plasticity remain largely unexplored.
Indeed, many broad biological questions remain unanswered: Is energy metabolism flexibility facilitated
through chromatin regulation of metabolic gene expression? How are nutrient sensing pathways connected to
the function of these chromatin regulators? Does chromatin-regulated metabolic gene expression influence
commitment to cell division? Do these chromatin modifiers influence energy metabolism plasticity required
during developmental programming.
Our preliminary data suggests chromatin remodelers, which regulate transcription by (re)positioning
nucleosomes, are central components of metabolic signaling pathways. Disruption of chromatin remodeling
results in defects in metabolic gene expression, oxygen consumption, cell division, and embryonic
development. Our central hypothesis is that chromatin modifiers link nutrient sensing pathways to
metabolic gene regulation required for fitness, proliferation and development. Our broad research goal
is to define chromatin modifications events that coordinate metabolic plasticity and are central to adaptive
cellular responses. Our varied experimental approach is innovative because it leverages the power of diverse
eukaryotic model systems, namely yeast and mice, to investigate fundamental conserved metabolic pathways
within different biological contexts. Through achievement of our research goal we expect the following
outcomes: Identification of novel epigenetic regulators of energy metabolism; determination of the relationship
between nutrient sensing pathways and chromatin; recognition of the chromatin-regulated metabolic
requirements for cell division; determination of chromatin modification required for energy metabolism during
development. Our proposed research is significant because it will establish chromatin modifiers as necessary
components of metabolic homeostasis, and serve as a platform to investigate epigenetic regulation of
metabolic function in developmental abnormalities and disease states.
细胞功能与环境的协调对于适应和生存至关重要。为
例如,细胞具有感知不同(即营养丰富或限制)环境的显着能力,
重新编程它们的能量代谢和增殖能力。动态营养环境是
在自然界中普遍存在,包括增殖微生物的竞争性生长环境,
多细胞生物体中的组织小生境。不能适应会导致细胞死亡,发育缺陷,
疾病事实上,能量代谢改变是许多病理学的主要促成因素,包括
癌症、心血管疾病和糖尿病,这些疾病共占美国所有死亡人数的三分之二。
适应性细胞反应通常通过基因表达的快速诱导变化来实现
程序.实现这一点的理想机制是通过染色质的修饰。尽管有这些知识,
染色质修饰促进代谢可塑性的机制在很大程度上仍未被探索。
事实上,许多广泛的生物学问题仍然没有答案:能量代谢的灵活性是否得到促进
通过染色质调节代谢基因的表达?营养感应途径是如何与
这些染色质调节因子的功能染色质调节的代谢基因表达是否影响
致力于细胞分裂?这些染色质修饰剂是否影响所需的能量代谢可塑性
在发展规划中。
我们的初步数据表明,染色质重塑,调节转录(重新)定位
核小体是代谢信号传导途径的中心组分。染色质重塑的破坏
导致代谢基因表达、耗氧量、细胞分裂和胚胎发育缺陷。
发展我们的中心假设是染色质修饰剂将营养传感途径与
健康、增殖和发育所需的代谢基因调控。我们广泛的研究目标
是定义染色质修饰事件,协调代谢可塑性,是适应性的核心,
细胞反应。我们多样化的实验方法是创新的,因为它利用了多样化的力量,
真核生物模型系统,即酵母和小鼠,以研究基本的保守代谢途径
在不同的生物学背景下。通过实现我们的研究目标,我们期望以下几点
结果:鉴定新的能量代谢表观遗传调节因子;确定
营养感应途径和染色质之间的关系;识别染色质调节的代谢
细胞分裂的要求;细胞分裂过程中能量代谢所需的染色质修饰的测定
发展我们提出的研究是有意义的,因为它将建立必要的染色质修饰剂
代谢稳态的组成部分,并作为一个平台,调查表观遗传调节
发育异常和疾病状态中的代谢功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashby J. Morrison其他文献
INO80 Chromatin Remodelling Coordinates Metabolic Homeostasis with Cell Division
INO80 染色质重塑协调代谢稳态与细胞分裂
- DOI:
10.1101/169128 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Graeme J. Gowans;Alicia N. Schep;Ka Man Wong;Devin A. King;W. Greenleaf;Ashby J. Morrison - 通讯作者:
Ashby J. Morrison
The Yeast INO 80 Complex Operates as a Tunable DNA Length-Sensitive Switch to Regulate Nucleosome Sliding Graphical
酵母 INO 80 复合物作为可调节 DNA 长度敏感开关来调节核小体滑动图形
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Y. Zhou;Stephanie L. Johnson;Laura J Lee;Adam D. Longhurst;Sean L. Beckwith;Matthew J. Johnson;Ashby J. Morrison;G. Narlikar - 通讯作者:
G. Narlikar
Process-specific somatic mutation distributions vary with three-dimensional genome structure
过程特异性体细胞突变分布随三维基因组结构而变化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. Akdemir;Victoria T. Le;S. Killcoyne;Devin A. King;Ya;Yanyan Tian;Akire Inoue;S. Amin;Frederick S. Robinson;R. Herrera;E. Lynn;Kin Chan;S. Seth;L. Klimczak;M. Gerstung;D. Gordenin;John O’Brien;Lei Li;R. Verhaak;P. Campbell;R. Fitzgerald;Ashby J. Morrison;Jesse R. Dixon;A. Futreal - 通讯作者:
A. Futreal
Chromatin Responses to DNA Damage
染色质对 DNA 损伤的反应
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Xuetong Shen;Ashby J. Morrison - 通讯作者:
Ashby J. Morrison
Chromatin modifications in DNA repair.
DNA 修复中的染色质修饰。
- DOI:
10.1007/400_008 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ashby J. Morrison;Xuetong Shen - 通讯作者:
Xuetong Shen
Ashby J. Morrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashby J. Morrison', 18)}}的其他基金
The Role of Chromatin in Metabolic Homeostasis Supplemental
染色质在代谢稳态中的作用补充剂
- 批准号:
10797761 - 财政年份:2016
- 资助金额:
$ 6.91万 - 项目类别:
The Influence of Myc on Chromatin and Genome Stability during Carcinogenesis
Myc 在癌变过程中对染色质和基因组稳定性的影响
- 批准号:
8584839 - 财政年份:2013
- 资助金额:
$ 6.91万 - 项目类别:
The Influence of Chromatin Structure on Carcinogen Susceptibility
染色质结构对致癌物易感性的影响
- 批准号:
8569954 - 财政年份:2013
- 资助金额:
$ 6.91万 - 项目类别:
The Influence of Myc on Chromatin and Genome Stability during Carcinogenesis
Myc 在癌变过程中对染色质和基因组稳定性的影响
- 批准号:
8735099 - 财政年份:2013
- 资助金额:
$ 6.91万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 6.91万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 6.91万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 6.91万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 6.91万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 6.91万 - 项目类别: