Machine learning algorithms to analyze large medical image datasets
用于分析大型医学图像数据集的机器学习算法
基本信息
- 批准号:10182522
- 负责人:
- 金额:$ 36.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Active LearningAddressAdoptionAlgorithmsBenchmarkingBrainCharacteristicsChildClinicalCollectionCrowdingDataData CollectionData SetDatabasesDevelopmentDiagnosisFatigueImageImage AnalysisInformaticsInterruptionLabelLearningLifeMachine LearningMedical ImagingMethodsModelingMorphologic artifactsNoisePatient CarePatient-Focused OutcomesPatientsPerformanceReference StandardsResearchSamplingSpeedStructureTechniquesTrainingUncertaintyUpdateautism spectrum disorderbaseclinical decision-makingcostcrowdsourcingdeep learningdesignexperimental studyimaging Segmentationimaging biomarkerimprovedinnovationinsightlearning algorithmlearning strategymachine learning algorithmnovelnovel strategiespreventquantitative imagingradiologistsuccesssupervised learning
项目摘要
Machine learning (ML) is poised to enable faster and more accurate interpretation of medical images by
augmenting the capabilities of experts. The cost and difficulty of generating expert quality labelled image data
is the primary limitation preventing faster progress and deployment in more domains. Success of ML
techniques for medical image interpretation may reduce the burden on radiologists, reducing errors arising
from fatigue or interruption, while simultaneously reducing costs and increasing speed and accuracy for
patients. Our overall objective for this research is to dramatically reduce the burden of creating high quality
reference labels by requiring only a small set of such labels from experts. We propose to address this problem
by creating innovative algorithms that will construct reference quality labelled data with little input from domain
experts, thus dramatically reducing the cost of labelling. This will enable us to apply ML techniques to generate
high quality labels of the large amounts of unlabeled data that are already available, which in turn will facilitate
the assessment of potential quantitative imaging biomarkers. We will develop, extend and evaluate novel
algorithms that represent three distinct strategies for reducing labelling cost. These three strategies are
learning from unlabelled data incorporating a novel strategy for characterizing uncertainty, optimizing sample
selection for expert quality labelling with a novel form of Active Learning especially suited for deep learning,
and reducing the cost of achieving quality labeling by replacing or augmenting an expert with a crowd of
inexperts. We will then implement and distribute these novel algorithms, facilitating the replication of our
experiments. Finally, we will demonstrate the practical efficacy of these three strategies by applying them to
the important challenge of identifying quantitative imaging biomarkers that best capture alterations in brain
structure that are associated with characteristics of ASD. These fundamental advances in informatics
algorithms will reduce the cost and increase the rate of obtaining quality labels, which will in turn facilitate the
widespread adoption and deployment of machine learning algorithms for image interpretation. Ultimately, this
will stimulate the development of new imaging biomarkers that hold the potential to dramatically improve
clinical decision-making and patient outcomes.
机器学习(ML)有望通过
增强专家的能力。产生专家质量标记图像数据的成本和困难
是阻止更快进步和部署更多域中的主要限制。 ML的成功
医学图像解释的技术可能会减轻放射科医生的负担,从而减少错误
从疲劳或中断,同时降低成本,并提高速度和准确性
患者。这项研究的总体目标是大大减轻创造高质量的负担
参考标签仅需要专家的一小部分此类标签。我们建议解决这个问题
通过创建创新算法,该算法将构建参考质量标记的数据,而域中的输入很少
专家,因此大大降低了标签成本。这将使我们能够应用ML技术生成
大量未标记数据的高质量标签,这反过来将有助于
评估潜在的定量成像生物标志物。我们将开发,扩展和评估新颖
代表降低标签成本的三种不同策略的算法。这三个策略是
从未标记的数据中学习,该数据包含了一种表征不确定性的新型策略,优化样本
选择专家质量标签,采用一种新颖的活跃学习形式,特别适合深度学习,
并通过替换或增加一群人来降低获得质量标签的成本
熟版。然后,我们将实施和分发这些新颖的算法,从而促进我们的复制
实验。最后,我们将通过将这三种策略应用于
确定最能捕获大脑改变的定量成像生物标志物的重要挑战
与ASD特征相关的结构。这些信息学的基本进步
算法将降低成本并提高获得质量标签的速度,这反过来又有助于
用于图像解释的机器学习算法的广泛采用和部署。最终,这个
将刺激具有显着改善潜力的新成像生物标志物的发展
临床决策和患者结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIMON K WARFIELD其他文献
SIMON K WARFIELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIMON K WARFIELD', 18)}}的其他基金
Motion Compensated fMRI for Pre-Surgical Planning in Epilepsy
用于癫痫手术前规划的运动补偿功能磁共振成像
- 批准号:
10659634 - 财政年份:2023
- 资助金额:
$ 36.96万 - 项目类别:
Machine learning algorithms to analyze large medical image datasets
用于分析大型医学图像数据集的机器学习算法
- 批准号:
10434022 - 财政年份:2021
- 资助金额:
$ 36.96万 - 项目类别:
Machine learning algorithms to analyze large medical image datasets
用于分析大型医学图像数据集的机器学习算法
- 批准号:
10584569 - 财政年份:2021
- 资助金额:
$ 36.96万 - 项目类别:
Novel MRI Imaging Tools and Software for Assessing Pediatric Crohn's Disease
用于评估儿童克罗恩病的新型 MRI 成像工具和软件
- 批准号:
8997501 - 财政年份:2014
- 资助金额:
$ 36.96万 - 项目类别:
Novel MRI Imaging Tools and Software for Assessing Pediatric Crohn's Disease
用于评估儿童克罗恩病的新型 MRI 成像工具和软件
- 批准号:
9212806 - 财政年份:2014
- 资助金额:
$ 36.96万 - 项目类别:
MRI Biomarkers of Patients with Tuberous Sclerosis Complex and Autism
结节性硬化症和自闭症患者的 MRI 生物标志物
- 批准号:
9315944 - 财政年份:2013
- 资助金额:
$ 36.96万 - 项目类别:
MRI Biomarkers of Patients with Tuberous Sclerosis Complex and Autism
结节性硬化症和自闭症患者的 MRI 生物标志物
- 批准号:
9112028 - 财政年份:2013
- 资助金额:
$ 36.96万 - 项目类别:
MRI Biomarkers of Patients with Tuberous Sclerosis Complex and Autism
结节性硬化症和自闭症患者的 MRI 生物标志物
- 批准号:
8896887 - 财政年份:2013
- 资助金额:
$ 36.96万 - 项目类别:
MRI Biomarkers of Patients with Tuberous Sclerosis Complex and Autism
结节性硬化症和自闭症患者的 MRI 生物标志物
- 批准号:
8705058 - 财政年份:2013
- 资助金额:
$ 36.96万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 36.96万 - 项目类别:
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
- 批准号:
10700193 - 财政年份:2023
- 资助金额:
$ 36.96万 - 项目类别:
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
- 批准号:
10586874 - 财政年份:2023
- 资助金额:
$ 36.96万 - 项目类别: