The cerebro-cerebellar-basal-gangliar network for visuomotor learning
视觉运动学习的大脑-小脑-基底神经节网络
基本信息
- 批准号:9983219
- 负责人:
- 金额:$ 102.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAgonistAnatomyAreaAssociation LearningBasal GangliaBehaviorBrainCerebellar CortexCerebellumCerebral cortexCognitionCognitiveComputational TechniqueComputer AnalysisComputing MethodologiesCuesData SetDentate nucleusDimensionsElectronic Medical Records and Genomics NetworkExhibitsFailureFractalsGrantHandHumanInjectionsLearningLeftLightMachine LearningMethodsModelingMonkeysMotorMovementMuscimolNeuronsOutcomeParietalPathway AnalysisPatternPerformancePharmaceutical PreparationsPhysiologicalPrefrontal CortexProcessPropertyPurkinje CellsRabies virusReaction TimeReadingReflex actionReportingRoleShort-Term MemorySignal TransductionSiteSourceSuggestionTechniquesTestingTimeTo specifyViralVirusVisualWalkingWorkclassical conditioningcognitive functioncognitive processexperimental studygamma-Aminobutyric Acidhuman diseasekinematicsmotor behaviormotor controlmotor learningnonhuman primatenovelrelating to nervous systemsignal processingsuccessvisual learningvisual motor
项目摘要
ABSTRACT
Visual learning is critical to the lives of human and non-human primates. Visuomotor association, the
assignment of an arbitrary symbol to a particular movement (like a red light to a braking movement), is a well-
studied form of visual learning. This proposal tests the hypothesis that the brain accomplishes visuomotor
associative learning using an anatomically defined closed-loop network, including the prefrontal cortex, the
basal ganglia, and the cerebellum. In our preliminary work we have developed a task that studies how
monkeys learn to associate one of two novel fractal symbols with a right hand movement, and the other symbol
with a left hand movement. Every experiment begins with the monkeys responding to two overtrained symbols
that they have seen hundreds of thousands of times. At an arbitrary time we change the symbols to two fractal
symbols that the monkey has never seen. It takes the monkey 40 to 70 trials to learn the new associations. In
our preliminary results we have discovered that Purkinje cells in the midlateral cerebellar hemisphere track the
monkeys’ learning as they as they figure out the required associations. The neurons signal the result of the
prior decision. Half of the neurons respond more when the prior decision was correct; the others respond more
when the prior decision was wrong. The difference between the activity of these two types of neurons provides
a cognitive error signal that is maximal when the monkeys are performing at a chance level, and gradually
becomes not different from zero as the monkeys learn the task. The neurons do not predict the result of the
impending decision. Although the neurons change their activity dramatically at the symbol switch, the
kinematics of the movements do not change at all. This proposal takes this discovery as the starting point for
four aims: 1) to use viral transynaptic tract tracing to discover the cortical and basal ganglia regions that
project to the cerebellar visuomotor association area. 2) to record from the four nodes of the network as
anatomically defined (midlateral cerebellar hemisphere, dentate nucleus, basal ganglia, prefrontal cortex),
simultaneously, using multiple single neuron recordings, to see if these areas also have information about the
process of visuomotor association 3) to inactivate each node, to see how their inactivation affects the monkey’s
ability to learn new associations, and whether the inactivation affects the activity of the neurons at the other
nodes. 4) to develop computational methods to analyze the activity of neural activity recorded simultaneously
in all four nodes of the network (Aim 2) in the midlateral cerebellar cortex with regard to parameters such as
prior outcome and movement, hand, symbol, and the intensity and epoch of the prior cognitive error signal.
We will use dimensional reduction techniques to answer questions like whether hand or symbol can be
decoded from network activity. We will model how the cerebellum simple spike cognitive error signal might
propagate through the network and be used to facilitate visuomotor association learning and the processing of
signals in the cerebellum, basal ganglia and cerebral cortex
摘要
视觉学习对人类和非人类灵长类动物的生活至关重要。视觉协会
将任意符号分配给特定的运动(如红灯分配给制动运动),是一个很好的方法。
研究视觉学习的形式。这项提议验证了大脑完成视觉功能的假设
联想学习使用解剖学定义的闭环网络,包括前额叶皮层,
基底神经节和小脑。在我们的初步工作中,我们已经开发了一个任务,研究如何
猴子学会将两个新的分形符号中的一个与右手运动联系起来,
用左手移动。每个实验都是从猴子对两个过度训练的符号做出反应开始的
他们已经看过成百上千次了。在任意时刻,我们将符号变为两个分形
猴子从未见过的符号猴子需要40到70次尝试来学习新的关联。在
我们的初步结果是,我们发现小脑中外侧半球的浦肯野细胞追踪着大脑中的神经元。
猴子的学习是因为他们找出了所需的关联。神经元发出信号,
事先决定。当先前的决定是正确的时,一半的神经元反应更大;其他神经元反应更大。
因为之前的决定是错误的。这两种类型神经元的活动差异提供了
当猴子在偶然水平上表演时,认知错误信号最大,
在猴子学习任务的过程中,神经元不能预测
即将做出的决定虽然神经元在符号转换时会显著改变它们的活动,
运动的运动学根本不改变。该提案以这一发现为起点,
四个目的:1)使用病毒跨突触束追踪来发现皮质和基底神经节区域,
投射到小脑视觉联合区。2)从网络的四个节点记录为
解剖学定义(小脑半球中外侧、齿状核、基底神经节、前额皮质),
同时,使用多个单神经元记录,看看这些区域是否也有关于神经元的信息。
3)观察每个节点,看看它们的失活如何影响猴子的视觉联想过程。
学习新关联的能力,以及失活是否会影响另一个神经元的活动。
结4)开发计算方法来分析同时记录的神经活动
在小脑中外侧皮层的所有四个网络节点(Aim 2)中,关于参数,
先前结果和运动、手、符号以及先前认知错误信号的强度和时期。
我们将使用降维技术来回答诸如手或符号是否可以
从网络活动中解码出来我们将模拟小脑简单尖峰认知错误信号如何可能
通过网络传播,并用于促进视觉联想学习和处理
小脑、基底神经节和大脑皮层中的信号
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Fusi其他文献
Stefano Fusi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Fusi', 18)}}的其他基金
Dissecting the role of the dentate gyrus microcircuit to improve cognitive discrimination in aging and Alzheimer's Disease
剖析齿状回微电路在改善衰老和阿尔茨海默氏病认知辨别中的作用
- 批准号:
10592865 - 财政年份:2022
- 资助金额:
$ 102.52万 - 项目类别:
CRCNS: Multiple Time Scale Memory Consolidation in Neural Networks
CRCNS:神经网络中的多时间尺度内存整合
- 批准号:
10673059 - 财政年份:2021
- 资助金额:
$ 102.52万 - 项目类别:
CRCNS: Multiple Time Scale Memory Consolidation in Neural Networks
CRCNS:神经网络中的多时间尺度内存整合
- 批准号:
10395852 - 财政年份:2021
- 资助金额:
$ 102.52万 - 项目类别:
CRCNS: Multiple Time Scale Memory Consolidation in Neural Networks
CRCNS:神经网络中的多时间尺度内存整合
- 批准号:
10468270 - 财政年份:2021
- 资助金额:
$ 102.52万 - 项目类别:
The Cerebro-Cerebellar-Basal-Gangliar Network for Visuomotor Learning
用于视觉运动学习的脑-小脑-基底-神经节网络
- 批准号:
10617219 - 财政年份:2019
- 资助金额:
$ 102.52万 - 项目类别:
The cerebro-cerebellar-basal-gangliar network for visuomotor learning
视觉运动学习的大脑-小脑-基底神经节网络
- 批准号:
10395983 - 财政年份:2019
- 资助金额:
$ 102.52万 - 项目类别:
Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
- 批准号:
10682220 - 财政年份:2008
- 资助金额:
$ 102.52万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 102.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 102.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 102.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




