Neurophysiology underlying neural representations of value
价值神经表征的神经生理学
基本信息
- 批准号:10682220
- 负责人:
- 金额:$ 82.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-10 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAnteriorArchitectureAreaBehaviorBehavioral ParadigmBrainCodeCognitiveDataDecision MakingDimensionsElectrophysiology (science)EventExhibitsGenerationsGeometryGrantHippocampusLaboratoriesLearningLifeMachine LearningMapsMeasuresMediatingMemoryMental disordersModelingMonkeysNeural Network SimulationNeuronsOutcomePatientsPrefrontal CortexProbabilityProcessPsychological reinforcementResponse to stimulus physiologyReversal LearningRoleSensoryStimulusStructureSynaptic TransmissionTestingTimeTrainingcingulate cortexdesignemotion regulationexecutive functionexperienceflexibilityhigh dimensionalityinsightmood regulationneuralneuromechanismneurophysiologynovelrecurrent neural networkresponsescaffoldstatistics
项目摘要
Understanding the neural mechanisms underlying decision-making is important because patients with many
psychiatric disorders make mal-adaptive decisions, impacting executive functioning, including emotion and mood
regulation. Historically, the mechanisms underlying decision-making have been most studied using behavioral
paradigms in which subjects repeatedly make decisions about well-controlled stimuli or options, invoking
perceptual, valuation, memory, or other processes. These studies have provided significant insight, but many if
not most decisions in the real world occur in very different circumstances than those realized in the laboratory.
Two paradigmatic types of such decisions are those made in novel situations never encountered before, and
those that require subjects to generate new responses to familiar stimuli, i.e. to flexibly adjust behavior in a new
way. In this grant, we test the hypothesis that mechanisms underlying these 2 forms of decision-making can be
revealed by examining the 'geometry' of neural representations and relating them to behavior in tasks invoking
the 2 types of decisions. The geometry of a representation is defined by the set of all distances between points
in the activity space that represent responses of multiple neurons in different conditions. Measures of a
representational geometry include assessment of its dimensionality. Decisions in novel situations require
generalizing from past experiences to a new one, an ability relying on abstraction. Abstraction constructs
variables describing features shared by instances within and across situations, capturing regularities and
structure in the world. Neural representations of abstracted variables are similar to the widely studied
disentangled representations in machine learning and have lower dimensionality. On the other hand, high
dimensional neural representations support the ability to generate many different responses without changing
the underlying representation. Recent data indicate that neural ensembles in the hippocampus (HPC) and
prefrontal cortex (PFC) achieve geometries with a sufficiently low dimensional ‘scaffold’ to support generalization
in new situations, but the scaffold is embedded in a higher dimensional representation of task variables. This
geometry has specific computational capabilities, but do they actually relate to decision-making? Here we
combine high-channel count electrophysiology, neural network modeling, and carefully designed tasks to provide
evidence for the first time that these 2 aspects of the geometry actually are used to support the 2 distinct types
of decision-making. We examine the geometry of representations in HPC and PFC in relation to decisions of
both types. We ask if the ability to make decisions relying on abstraction correlates with how a key task-relevant
variable is represented in a low-dimensional scaffold (Aim 1). Then we test if the representation encodes many
other variables with higher dimensionality, and if this predicts the ability to learn to generate new responses (Aim
2). Finally, we train neural network models on the same tasks to elucidate neural coding principles in HPC and
PFC, and interactions between areas mediating these 2 forms of decision-making (Aim 3).
了解决策背后的神经机制很重要,因为许多患者
精神疾病会做出适应不良的决定,影响执行功能,包括情绪和情绪
调控从历史上看,决策背后的机制大多是使用行为模型来研究的。
受试者反复对控制良好的刺激或选项做出决定的范式,
感知、评价、记忆或其他过程。这些研究提供了重要的洞察力,但许多
真实的世界中的大多数决策并不是在与实验室中实现的决策非常不同的情况下发生的。
这类决策的两种典型类型是在以前从未遇到过的新情况下做出的决策,
那些要求受试者对熟悉的刺激产生新的反应,即在新的刺激中灵活地调整行为。
路上了在这项研究中,我们测试了这两种决策形式的潜在机制的假设,
通过检查神经表征的“几何学”并将其与任务调用中的行为联系起来,
两种类型的决定。制图表达的几何由点之间的所有距离的集合定义
在活动空间中,它们代表了多个神经元在不同条件下的反应。措施的
代表性几何学包括其维数评估。在新情况下的决策需要
从过去的经验归纳到新的经验,这是一种依赖于抽象的能力。抽象结构
变量描述由情况内和跨情况的实例共享的特征,捕获特征,
世界上的结构。抽象变量的神经表征与广泛研究的
机器学习中的解纠缠表示,并且具有较低的维度。另一方面,高
三维神经表征支持生成许多不同反应的能力,而不改变
底层代表。最近的数据表明,在海马神经合奏(HPC)和
前额叶皮层(PFC)实现几何与足够低维的“支架”,以支持泛化
在新的情况下,但支架是嵌入在一个更高的维度表示的任务变量。这
几何学具有特定的计算能力,但它们真的与决策有关吗?这里我们
联合收割机结合高通道计数电生理学、神经网络建模和精心设计的任务,
第一次证明几何体的这两个方面实际上用于支持两种不同的类型
决策过程我们研究了HPC和PFC中的几何表示,
两种类型。我们问,依赖抽象做出决策的能力是否与关键任务相关
变量表示在一个低维的支架(目标1)。然后我们测试表示是否编码了许多
其他具有更高维度的变量,如果这预测了学习产生新响应的能力(Aim
2)。最后,我们在相同的任务上训练神经网络模型,以阐明HPC中的神经编码原理,
PFC,以及介导这两种决策形式的领域之间的相互作用(目标3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Fusi其他文献
Stefano Fusi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Fusi', 18)}}的其他基金
Dissecting the role of the dentate gyrus microcircuit to improve cognitive discrimination in aging and Alzheimer's Disease
剖析齿状回微电路在改善衰老和阿尔茨海默氏病认知辨别中的作用
- 批准号:
10592865 - 财政年份:2022
- 资助金额:
$ 82.19万 - 项目类别:
CRCNS: Multiple Time Scale Memory Consolidation in Neural Networks
CRCNS:神经网络中的多时间尺度内存整合
- 批准号:
10673059 - 财政年份:2021
- 资助金额:
$ 82.19万 - 项目类别:
CRCNS: Multiple Time Scale Memory Consolidation in Neural Networks
CRCNS:神经网络中的多时间尺度内存整合
- 批准号:
10395852 - 财政年份:2021
- 资助金额:
$ 82.19万 - 项目类别:
CRCNS: Multiple Time Scale Memory Consolidation in Neural Networks
CRCNS:神经网络中的多时间尺度内存整合
- 批准号:
10468270 - 财政年份:2021
- 资助金额:
$ 82.19万 - 项目类别:
The Cerebro-Cerebellar-Basal-Gangliar Network for Visuomotor Learning
用于视觉运动学习的脑-小脑-基底-神经节网络
- 批准号:
10617219 - 财政年份:2019
- 资助金额:
$ 82.19万 - 项目类别:
The cerebro-cerebellar-basal-gangliar network for visuomotor learning
视觉运动学习的大脑-小脑-基底神经节网络
- 批准号:
9983219 - 财政年份:2019
- 资助金额:
$ 82.19万 - 项目类别:
The cerebro-cerebellar-basal-gangliar network for visuomotor learning
视觉运动学习的大脑-小脑-基底神经节网络
- 批准号:
10395983 - 财政年份:2019
- 资助金额:
$ 82.19万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 82.19万 - 项目类别:
Research Grant