Can suicide theory-guided natural language processing of clinical progress notes improve existing prediction models of Veteran suicide mortality?
自杀理论指导的临床进展笔记自然语言处理能否改善现有的退伍军人自杀死亡率预测模型?
基本信息
- 批准号:10187800
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAreaAttentionAutomated AnnotationCaringClinicalDataData CollectionData ScienceDetectionDevelopmentElectronic Health RecordEnsureEventFeeling hopelessFeeling suicidalFemaleGenderGoalsInformation RetrievalInterventionKnowledgeLanguageLeadershipLinguisticsMachine LearningMapsMedicalMedicineMental HealthMethodologyMethodsModelingNatural Language ProcessingNomenclatureOntologyPainPatientsPerformanceReadabilityResearchResourcesRisk AssessmentRisk BehaviorsRisk FactorsSignal TransductionStructureSuicideSuicide attemptSuicide preventionSystemSystematized Nomenclature of MedicineTarget PopulationsTextTimeTranslatingVeteransVeterans Health Administrationclinical encounterclinical practiceconcept mappingdata repositorydata warehousedesignhands-on learninghigh riskimplementation facilitationimprovedinnovationmachine learning algorithmnovelphrasespredictive modelingpsychologicrandom forestreducing suiciderisk prediction modelstructured datasuicidal behaviorsuicidal morbiditysuicidal risksuicide mortalitysuicide ratesupport vector machinetext searchingtheoriestool
项目摘要
Background: Reducing suicide and suicide attempts among U.S. Veterans is a major national priority, as
more than 6,000 Veterans die by suicide every year and many more attempt suicide. In 2017, the most recent
year for which data are available, the suicide rate among Veterans was 1.5 times the rate of non-Veterans, and
the suicide rate among female Veterans was 2.2 times the rate of non-Veteran females. Current VHA suicide
risk prediction models suffer from high numbers of false negatives - Veterans not deemed at high risk of
suicide who do attempt or die by suicide. These suicide prediction models have not incorporated the rich
information from clinical progress notes that may improve our ability to predict suicidal behavior. Much of this
information in clinical progress notes is unstructured free text. A suicide-specific ontology and information
extraction system that can extract suicide-related information from unstructured clinical progress notes is not
available.
Significance/Impact: Enhancing VHA's ability to identify Veterans who are most likely to attempt suicide
ensures that limited intervention resources can be focused on Veterans with the highest risk, before they
attempt suicide or die by suicide. The proposed study is well-aligned with priorities for HSR&D research and
with VA strategic goals for 2018 – 2024 set out by VA leadership, who listed suicide prevention as “VA's
highest clinical priority.”
Innovation: Our key methodological innovation is to pair a state-of-the-art theoretical framework (3-step
Theory of Suicide) to predict who is most likely to act on their suicidal thoughts with state-of-the-art data
science methods (NLP, machine learning). Since our suicide-theory concepts, that is hopelessness,
connectedness, psychological pain, and capacity for suicide, are not represented in structured patient data, we
will develop novel NLP and information extraction tools and apply them to clinical progress notes, the potential
of which has not been fully levied to improve suicide prediction models.
Specific Aims: We have three specific aims:
1. Develop a suicide-specific ontology for machine recognition of hopelessness, connectedness,
psychological pain, and capacity for suicide in progress notes of clinical encounters with Veterans who
attempted or died by suicide.
2. Extract information on the presence and intensity of hopelessness, connectedness, psychological pain,
and capacity for suicide in clinical progress notes and describe change in these concepts in proximity of
a suicide or suicide attempt.
3. Determine the predictive validity of hopelessness, connectedness, psychological pain, and capacity for
suicide regarding Veteran suicide attempts and mortality in two prediction models that VA currently
uses in clinical practice: STORM and REACHVET.
Methodology: The proposed mixed-methods study has an exploratory sequential design where a qualitative
component (Aim 1) informs quantitative analyses (Aims 2 and 3). Data collection will be from existing clinical
progress notes in VHA's Corporate Data Warehouse, VA's Suicide Prevention Applications Network and from
the VA/DoD Suicide Data Repository. We will use linguistic annotation and thematic analysis for Aim 1 and
natural language processing and machine learning models for Aims 2 and 3. The target population is Veterans
who receive care through VHA.
Next Steps/Implementation: Our most important next step is to be in regular contact with local and national
colleagues at the VA Office of Mental Health and Suicide Prevention (OMHSP) to facilitate implementation of
our results in the operational versions of STORM and REACHVET.
背景:减少美国退伍军人的自杀和自杀企图是国家的主要优先事项,因为
每年有6000多名退伍军人自杀身亡,还有更多的人试图自杀。2017年,最新的
在有数据的年份,退伍军人的自杀率是非退伍军人的1.5倍,
退伍军人女性自杀率是非退伍军人自杀率的2.2倍。目前的VHA自杀
风险预测模型存在大量假阴性-退伍军人不被认为存在高风险
自杀未遂或自杀身亡的人。这些自杀预测模型没有将富人纳入其中
临床进展笔记中的信息可能会提高我们预测自杀行为的能力。其中很大一部分
临床进展笔记中的信息是非结构化的自由文本。特定于自杀的本体论和信息
可以从非结构化临床进展记录中提取与自杀有关的信息的提取系统不是
可用。
意义/影响:增强VHA识别最有可能企图自杀的退伍军人的能力
确保有限的干预资源可以集中在风险最高的退伍军人身上,在他们
企图自杀或自杀而死。拟议的研究与高铁和高铁研究和发展的优先事项很好地一致
退伍军人管理局领导层制定了2018-2024年退伍军人管理局战略目标,并将自杀预防列为退伍军人管理局的
临床上最优先考虑的问题。
创新:我们的关键方法创新是配对最先进的理论框架(3步
自杀理论)用最先进的数据预测谁最有可能按照他们的自杀念头行事
科学方法(NLP、机器学习)。既然我们的自杀论概念,那就是绝望,
连接性、心理痛苦和自杀能力没有体现在结构化的患者数据中,我们
将开发新的NLP和信息提取工具并将其应用于临床进展笔记,潜在的
其中还没有完全征收,以改善自杀预测模型。
具体目标:我们有三个具体目标:
1.开发特定于自杀的本体,用于机器识别无望、连通性、
心理痛苦和自杀能力进展中与退伍军人临床接触的笔记
自杀未遂或自杀身亡。
2.提取关于绝望、联系、心理痛苦的存在和强度的信息,
和自杀能力在临床进展记录中,并描述这些概念在接近
自杀或自杀未遂。
3.确定无望感、连通性、心理痛苦和能力的预测效度
退伍军人自杀未遂与死亡率的关系目前在两个预测模型中
临床应用:STORM和REACHVET。
方法:拟议的混合方法研究采用探索性顺序设计,其中定性
构成部分(目标1)提供定量分析信息(目标2和3)。数据收集将来自现有的临床
VHA公司数据仓库、退伍军人管理局自杀预防应用网络和
退伍军人事务部/国防部自杀数据库。我们将使用语言注释和主题分析来实现目标1和
目标2和目标3的自然语言处理和机器学习模型。目标人群是退伍军人
通过VHA接受护理的人。
下一步/实施:我们最重要的下一步是与地方和国家保持定期联系
退伍军人事务部精神健康和自杀预防办公室的同事们,以促进
我们在STORM和REACHVET运行版本中的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Sox-Harris其他文献
Alex Sox-Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Sox-Harris', 18)}}的其他基金
Addressing the Gap in Feasible, Valid, and Important Quality Measures for the Treatment of Carpal Tunnel Syndrome
弥补治疗腕管综合症的可行、有效和重要的质量措施方面的差距
- 批准号:
10240300 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Addressing the Gap in Feasible, Valid, and Important Quality Measures for the Treatment of Carpal Tunnel Syndrome
弥补治疗腕管综合症的可行、有效和重要的质量措施方面的差距
- 批准号:
10506324 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Development and Validation of a Risk Calculator for Total Joint Replacement
全关节置换风险计算器的开发和验证
- 批准号:
9921210 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Improving the Quality of Addiction Treatment Quality Measurement
提高成瘾治疗质量测量的质量
- 批准号:
8269875 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Improving the Quality of Addiction Treatment Quality Measurement
提高成瘾治疗质量测量的质量
- 批准号:
8597287 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Alcohol Screening Scores and Medical Outcomes: Age and Gender Influences
酒精筛查分数和医疗结果:年龄和性别的影响
- 批准号:
7387264 - 财政年份:2008
- 资助金额:
-- - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
The attention area estimation and safety evaluation of BCI using SSVEP
基于SSVEP的BCI注意力区域估计和安全性评估
- 批准号:
26870684 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8189126 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8217067 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8423034 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
7588129 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Study on Land Use Control of Urbanization Control Area which paid attention to District where eased Development Permission System
关注放宽开发许可制度区的城镇化控制区土地利用控制研究
- 批准号:
19760423 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Synthetic research about restructuring of the dialect, area word education that it paid attention to the communication consciousness, function
注重交际意识、功能的方言、方言教育重构综合研究
- 批准号:
15330183 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Changing sea levels and (semi-)terrestrial landscape development in the Baltic Sea coastal area, with special attention to the role of the Darss Sill
波罗的海沿岸地区的海平面变化和(半)陆地景观发展,特别关注达斯海床的作用
- 批准号:
5385409 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Units