Automated assessment of dyadic interaction using physiological synchrony and machine learning
使用生理同步和机器学习自动评估二元相互作用
基本信息
- 批准号:10353119
- 负责人:
- 金额:$ 7.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBrainCategoriesClassificationClientClinical PsychologyCollaborationsCommunicationCommunitiesComplementComputersDataData SetDisadvantagedEducationElectrocardiogramElectroencephalographyEmotionalEvaluationFamilyFoundationsGalvanic Skin ResponseGoalsHealthHeart RateHumanIndividualInterpersonal RelationsInterventionMachine LearningMeasurementMeasuresMental HealthMethodsOutcomeParticipantPatient Self-ReportPattern RecognitionPerformancePersonal CommunicationPersonal SatisfactionPersonsPhysiologicalPhysiologyPsyche structurePublic HealthQuality of lifeResearchResearch PersonnelResearch Project GrantsRespirationSideSignal TransductionSkin TemperatureSocial FunctioningSocial InteractionSourceTechniquesTechnologyTestingTimeautomated analysisbaseclassification algorithmconflict resolutiondyadic interactionimprovedinnovative technologiesinsightmachine learning algorithmmembermental health counselingmultidisciplinaryregression algorithmresponsesensorsignal processingsocialsocial engagementsocial relationshipsstatisticsstudent participationteachertime usetool
项目摘要
ABSTRACT
Interpersonal communication is critical for human health and wellbeing in situations such as mental health
intervention, education, and conflict resolution. However, assessment of communication quality and social
connectedness continues to rely on self-report measures and subjective observations. A more objective and
dynamic approach to the evaluation of interpersonal engagement could provide a useful complement to state-
of-the-art methods. For example, alternative methods could allow researchers to better quantify the flow of social
interaction, determine how different aspects of communication influence outcomes, and identify avenues for
enhancing interpersonal communication. Furthermore, valid measures of social engagement could benefit
related fields such as computer-supported collaboration, with potential broad impacts on human quality of life.
Recent technological advances have enabled the study of physiological synchrony: a phenomenon in which the
physiological responses of two individuals (e.g., heart rate, respiration) converge as the individuals interact.
Synchronization occurs involuntarily and could provide rich information about the dynamics of interpersonal
relationships. However, while studies have shown robust correlations between physiological synchrony and
engagement at the group level, there has been practically no effort to use synchrony to assess engagement at
the level of individual dyads. Thus, this project will develop and evaluate machine learning technologies that can
automatically recognize mental/interpersonal states of individual dyads based on their physiological responses.
The project will consist of two studies. In the first study, we will use regression algorithms to estimate dyadic
engagement over 60-second intervals of a naturalistic 15-minute conversation. In the second study, we will then
use classification algorithms to classify 4-minute acted conversation scenarios into one of 4 classes: positive
two-sided, negative two-sided, and two one-sided conversation classes. Regression and classification represent
two major families of machine learning techniques, each with advantages and disadvantages, and will thus be
examined in complementary studies. For each study, five physiological measurements (electrocardiography,
skin conductance, respiration, skin temperature, dry electroencephalography) will be collected from both
members of the dyad to serve as the basis for regression and classification.
Upon completion, the project will provide the research community with validated methods for extracting dyad-
level information about interpersonal interaction from physiological measurements. This will pave the way for
future research that could explore how physiology-based assessment could provide useful data in realistic
scenarios (e.g., mental health intervention and education), how it could be combined with other techniques (e.g.,
self-report), and how it might be used to enhance interpersonal interaction. In the long term, automated analysis
of physiological responses may become part of an efficient toolbox for analysis and enhancement of dyadic
interaction, providing numerous benefits to human health, abilities, and well-being.
抽象的
人际沟通对于心理健康等情况下的人类健康和福祉至关重要
干预、教育和解决冲突。然而,对沟通质量和社交的评估
连通性仍然依赖于自我报告措施和主观观察。更加客观和
评估人际参与的动态方法可以为国家评估提供有用的补充
最先进的方法。例如,替代方法可以让研究人员更好地量化社交流量
互动,确定沟通的不同方面如何影响结果,并确定沟通的途径
加强人际沟通。此外,有效的社会参与措施可以受益
相关领域,例如计算机支持的协作,对人类生活质量具有潜在的广泛影响。
最近的技术进步使得生理同步性的研究成为可能:一种现象,其中
当两个人互动时,他们的生理反应(例如心率、呼吸)会趋同。
同步是不由自主地发生的,可以提供有关人际动态的丰富信息
关系。然而,虽然研究表明生理同步性和
尽管在集团层面的参与度方面,实际上还没有尝试使用同步性来评估集团层面的参与度。
个体二元组的水平。因此,该项目将开发和评估机器学习技术,这些技术可以
根据个体的生理反应自动识别个体的心理/人际状态。
该项目将包括两项研究。在第一项研究中,我们将使用回归算法来估计二元
在 15 分钟的自然对话中,有超过 60 秒的参与时间。在第二项研究中,我们将
使用分类算法将 4 分钟的对话场景分为 4 类之一:正面
双边、消极双边和两个单边对话类。回归和分类代表
机器学习技术的两大家族,各有优缺点,因此将被
在补充研究中进行了检查。对于每项研究,五项生理测量(心电图、
皮肤电导、呼吸、皮肤温度、干脑电图)将从两者中收集
二元组的成员作为回归和分类的基础。
完成后,该项目将为研究界提供经过验证的方法来提取二元组
从生理测量中获取有关人际互动的水平信息。这将为
未来的研究可以探索基于生理学的评估如何在现实中提供有用的数据
情景(例如,心理健康干预和教育),如何与其他技术相结合(例如,
自我报告),以及如何使用它来增强人际互动。从长远来看,自动化分析
生理反应的研究可能成为分析和增强二元反应的有效工具箱的一部分
互动,为人类健康、能力和福祉带来诸多益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vesna Dominika Novak其他文献
Different adaptation error types in affective computing have different effects on user experience: A Wizard-of-Oz study
情感计算中不同的适应错误类型对用户体验有不同的影响:一项“魔法助手”研究
- DOI:
10.1016/j.ijhcs.2024.103440 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:5.100
- 作者:
Mohammad Sohorab Hossain;Alexandria Fong Sowers;Joshua Dean Clapp;Vesna Dominika Novak - 通讯作者:
Vesna Dominika Novak
Vesna Dominika Novak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vesna Dominika Novak', 18)}}的其他基金
Automated assessment of dyadic interaction using physiological synchrony and machine learning
使用生理同步和机器学习自动评估二元相互作用
- 批准号:
10553246 - 财政年份:2022
- 资助金额:
$ 7.34万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Discovery Early Career Researcher Award
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Operating Grants
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Research Grant
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Fellowship
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 7.34万 - 项目类别:
Research Grant