Molecular mechanism of bidirectional transport

双向运输的分子机制

基本信息

项目摘要

PROJECT SUMMARY Bidirectional transport of vesicles and organelles in cells involves a tug-of-war between the microtubule motors kinesin and dynein. This transport is particularly important in the axons and dendrites of neurons and in cilia and flagella, and transport defects are linked to neurodegenerative diseases such as Alzheimer’s and ALS, as well as ciliopathies. Although many of the molecular players are known, the working mechanisms of these component parts and how their activities combine to achieve the emergent property of bidirectional transport are not sufficiently understood. The goal of this proposal is to bridge the gulf in understanding between the mechanochemistry of single kinesin and dynein motors and the bidirectional transport dynamics of vesicles and organelles observed in cells. Unresolved questions include: How does load affect the mechanochemistry and detachment kinetics of different kinesins and dynein? How do opposing motors coordinate and compete to achieve bidirectional transport? How do regulatory proteins, microtubule associated proteins and tubulin post- translational modifications alter the balance of plus- and minus-end directed motility to achieve proper vectorial transport? To address these questions, Interferometric Scattering (iSCAT) microscopy with nanometer spatial precision and millisecond temporal resolution will be used to track individual motor domains, single motor proteins, and multi-motor assemblies as they step along their microtubule tracks. These microscopy studies will be complemented by stopped-flow kinetics investigations, in vitro reconstitution experiments, and computational modeling to understand assemblies of increasing complexity. Specific motor mechanisms to be investigated include the origin of the fast speed and superprocessivity of kinesin-3, the polymerase mechanism of kinesin-5, and the molecular basis of dynein activation by its adapter proteins. A DNA tensiometer will be developed to understand the influence of mechanical load on kinesin and dynein mechanochemistry, and statistical tools will be developed to extract load-dependent detachment kinetics from these experiments. Finally, multi-motor assemblies will be built using DNA origami, which allows for precise control of motor number and positioning, and reconstituted lipid vesicles, which mimic the mechanical and diffusional properties of intracellular cargo. This work will advance our understanding of how organelles are correctly positioned in cells and how specific intracellular cargo are reliably targeted to their proper cellular locations.
项目总结 细胞内囊泡和细胞器的双向运输涉及微管马达之间的拉锯战 激动素和动力蛋白。这种运输在神经元的轴突和树突以及纤毛和 鞭毛和运输缺陷也与阿尔茨海默氏症和ALS等神经退行性疾病有关 作为纤毛病。虽然许多分子参与者是已知的,但这些组分的工作机制 部分以及它们的活动如何结合以实现双向运输的紧急特性 充分理解。这项提议的目标是弥合两国在理解上的鸿沟 单个动蛋白和动力蛋白马达的机械力化学和小泡和动力蛋白的双向运输动力学 细胞内观察到的细胞器。悬而未决的问题包括:载荷如何影响机械力化学和 不同动蛋白和动力蛋白的脱附动力学?对立的马达如何协调和竞争 实现双向运输?调节蛋白、微管相关蛋白和微管蛋白是如何在 翻译修饰改变了正端和负端定向运动的平衡,以实现适当的向量 交通工具?为了解决这些问题,具有纳米空间的干涉散射(ISCAT)显微镜 精度和毫秒级的时间分辨率将用于跟踪单个马达领域、单个马达 蛋白质,以及沿着微管轨迹行走的多马达组件。这些显微镜研究将 辅以停流动力学研究、体外重建实验和计算 建模以了解日益复杂的部件。具体的运动机制有待研究 包括Kinesin-3快速和超加工的起源,Kinesin-5的聚合机制, 以及动力蛋白被其接头蛋白激活的分子基础。一种DNA张力计将被开发出来 了解机械负荷对动蛋白和动力蛋白机械力化学的影响,统计工具将 被开发来从这些实验中提取依赖于载荷的脱离动力学。最后,多电机 组装将使用DNA折纸技术制造,它允许精确控制电机数量和定位, 和重组脂泡,模拟细胞内货物的机械和扩散特性。这 这项工作将促进我们对细胞器在细胞中如何正确定位以及具体程度的理解 细胞内的货物可以可靠地定位到它们适当的蜂窝位置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Olaf Hancock其他文献

William Olaf Hancock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Olaf Hancock', 18)}}的其他基金

Molecular Machines Mechanism and Structure (M3S) Training Program
分子机器机理与结构(M3S)培训项目
  • 批准号:
    10628921
  • 财政年份:
    2023
  • 资助金额:
    $ 81.46万
  • 项目类别:
Molecular mechanism of bidirectional transport
双向运输的分子机制
  • 批准号:
    10551235
  • 财政年份:
    2021
  • 资助金额:
    $ 81.46万
  • 项目类别:
Kinesin and +TIP-based microtubule steering
基于驱动蛋白和 TIP 的微管转向
  • 批准号:
    8220458
  • 财政年份:
    2012
  • 资助金额:
    $ 81.46万
  • 项目类别:
Kinesin and +TIP-based microtubule steering
基于驱动蛋白和 TIP 的微管转向
  • 批准号:
    8917267
  • 财政年份:
    2012
  • 资助金额:
    $ 81.46万
  • 项目类别:
Kinesin and +TIP-based microtubule steering
基于驱动蛋白和 TIP 的微管转向
  • 批准号:
    8729495
  • 财政年份:
    2012
  • 资助金额:
    $ 81.46万
  • 项目类别:
Kinesin and +TIP-based microtubule steering
基于驱动蛋白和 TIP 的微管转向
  • 批准号:
    8549269
  • 财政年份:
    2012
  • 资助金额:
    $ 81.46万
  • 项目类别:
Directed assembly of artificial mitotic spindles
人工有丝分裂纺锤体的定向组装
  • 批准号:
    7629067
  • 财政年份:
    2008
  • 资助金额:
    $ 81.46万
  • 项目类别:
Directed assembly of artificial mitotic spindles
人工有丝分裂纺锤体的定向组装
  • 批准号:
    7363764
  • 财政年份:
    2008
  • 资助金额:
    $ 81.46万
  • 项目类别:
Molecular mechanism of Kinesin-2 motility
Kinesin-2运动的分子机制
  • 批准号:
    7227894
  • 财政年份:
    2006
  • 资助金额:
    $ 81.46万
  • 项目类别:
Molecular Mechanism of Kinesin-2 Motility
Kinesin-2 运动的分子机制
  • 批准号:
    8462993
  • 财政年份:
    2006
  • 资助金额:
    $ 81.46万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 81.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了