This way out: Spatiotemporal regulation of Vibrio cholerae biofilm dispersal
出路:霍乱弧菌生物膜扩散的时空调控
基本信息
- 批准号:10188774
- 负责人:
- 金额:$ 10.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesBacteriaBindingBiochemistryBiologyBiophysicsCell FractionationCell-Matrix JunctionCellsCommunitiesEducational workshopEnvironmentEnzymesEpitopesEventExhibitsFailureGene ExpressionGenesGenetic ScreeningGoalsGrowthHeterogeneityImaging TechniquesIndividualInfectionKnowledgeLeadLife StyleLightLiquid substanceLuciferasesMass Spectrum AnalysisMeasuresMentorsMicrobial BiofilmsMicrobiologyMicroscopyModelingMolecularMonitorNamesOperonPeptide HydrolasesPhasePhenotypePhosphoric Monoester HydrolasesPhosphotransferasesPopulationProcessProductionProteinsProteomicsRegulationRegulonReporterResearchResearch PersonnelResolutionRoleSeverity of illnessSignal TransductionStimulusSwimmingSystemTimeTrainingUniversitiesVibrio choleraeVibrio cholerae infectionWestern BlottingWorkWritingbacterial geneticscareercell motilitycomparativedisease transmissionextracellulargenetic analysismutantnew technologypathogenprofessorpromoterresponsescreeningsensorspatiotemporalsymposiumtheoriestherapy developmenttooltranscriptome sequencing
项目摘要
PROJECT SUMMARY
Bacteria alternate between a free-swimming lifestyle and existing in sessile communities known as biofilms. The
biofilm lifecycle consists of three stages: founder cell attachment, biofilm maturation, and dispersal. The global
pathogen Vibrio cholerae forms biofilms during infection and biofilm dispersal is critical for disease transmission.
While the components facilitating V. cholerae biofilm formation are defined, almost nothing is known about V.
cholerae biofilm dispersal. I developed a real-time microscopy approach that permits examination of the entire
biofilm lifecycle, including dispersal, in V. cholerae. Using this imaging technique and high-content genetic
screening, I have identified and begun characterizing components required for V. cholerae biofilm dispersal;
signal transduction proteins, matrix disassembling enzymes, and motility functions that promote biofilm exit. Now,
my overarching goal is to define the signaling mechanisms that coordinate biofilm dispersal in space and time at
single-cell resolution. Regarding signal transduction components, the mutant with the most extreme biofilm
dispersal-failure phenotype from my screen is defective in a wholly uncharacterized two-component regulatory
system. This circuit is composed of a sensor that I named DbfS (for Dispersal of Biofilm Sensor), a response
regulator that I named DbfR (for Dispersal of Biofilm Regulator), and a small secreted protein of no known
function, VC1637, that is encoded in the dbfS-dbfR operon and controls DbfS activity. In addition, my genetic
analyses show that a second, unknown, sensor kinase must exist and phosphorylate DbfR. I propose a model
in which two sensors, regulated by different stimuli, converge on DbfR to control V. cholerae biofilm dispersal. I
will use the tools of microscopy, bacterial genetics, proteomics, biochemistry, and biophysics theory to: (Aim 1)
determine how DbfR integrates information from two sensors to control biofilm dispersal; (Aim 2) define how the
small protein, VC1637, controls biofilm dispersal; (Aim 3) determine how biofilm dispersal occurs at the single-
cell level. The proposed research will reveal how dispersal is coordinated in V. cholerae by defining the
molecular-level signaling events, impinging on individual cells, that lead to population-wide exit from biofilms.
Moreover, this work could reveal targets that can be manipulated to activate biofilm dispersal, possibly guiding
development of treatments that reduce the duration of V. cholerae infection. My K99 training will be completed
under the guidance of my mentor Professor Bonnie Bassler at Princeton University where I am immersed in a
vibrant intellectual environment. I have enlisted the support of several collaborators who are experts in topics
that are wholly new to me, such as proteomics and biophysical theory. In addition, I plan to further my growth
through participation in microbiology conferences, attendance of courses in proteomics, biophysics, and lab
management, and by partaking in scientific writing workshops. By the start of the R00 phase, the knowledge that
I will have gained, combined with my existing expertise, will enable me to achieve my career goal of being an
independent academic researcher tackling fundamental problems in biology.
项目总结
细菌在自由游泳的生活方式和固定的生物膜群落之间交替存在。这个
生物膜的生命周期包括三个阶段:创始细胞附着、生物膜成熟和扩散。《环球报》
霍乱弧菌在感染过程中形成生物膜,生物膜扩散是疾病传播的关键。
虽然促进霍乱弧菌生物膜形成的成分已经定义,但对霍乱弧菌几乎一无所知。
霍乱菌生物被膜扩散。我开发了一种实时显微镜方法,可以检查整个
霍乱弧菌的生物膜生命周期,包括扩散。利用这种成像技术和高含量的基因
通过筛选,我已经鉴定并开始鉴定霍乱弧菌生物被膜扩散所需的成分;
促进生物膜退出的信号转导蛋白、基质分解酶和运动功能。现在,
我的首要目标是定义在空间和时间上协调生物膜扩散的信号机制
单元格分辨率。关于信号转导成分,具有最极端生物膜的突变体
我屏幕上的分散-失败表型在一个完全没有特征的双组分调控中是有缺陷的
系统。这个电路由一个传感器组成,我称之为dBFS(用于生物膜传感器的扩散),一个响应器
我命名为DbfR(用于生物膜的扩散调节)的调节器,以及一个未知的小分泌蛋白
函数VC1637,它编码在dBFS-DBFR操作子中,并控制dBFS活动。另外,我的基因
分析表明,必须存在第二个未知的传感器激酶,并使DbfR磷酸化。我提出了一个模型
其中,受不同刺激调节的两个传感器会聚在DbfR上,以控制霍乱弧菌生物膜的扩散。我
将利用显微镜、细菌遗传学、蛋白质组学、生物化学和生物物理学理论的工具:(目标1)
确定DbfR如何整合来自两个传感器的信息以控制生物膜扩散;(目标2)确定如何
小蛋白VC1637控制生物膜的扩散;(目标3)确定生物膜如何在单个-
细胞水平。这项拟议的研究将通过定义霍乱弧菌中的
分子水平的信号事件,影响单个细胞,导致整个种群退出生物膜。
此外,这项工作可能会揭示可以被操纵以激活生物膜扩散的靶标,这可能会指导
开发缩短霍乱弧菌感染持续时间的治疗方法。我的K99训练就会完成
在普林斯顿大学我的导师邦妮·巴斯勒教授的指导下,我沉浸在
充满活力的智力环境。我已经得到了几位合作者的支持,他们都是主题方面的专家
对我来说是全新的,比如蛋白质组学和生物物理学理论。此外,我计划进一步发展我的事业
通过参加微生物学会议,参加蛋白质组学、生物物理学和实验室课程
管理,并参加科学写作研讨会。在R00阶段开始时,了解到
我将获得,结合我现有的专业知识,将使我能够实现我的职业目标,成为一名
研究生物学基本问题的独立学术研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew A. Bridges其他文献
Septin complexes assemble during a kinetic window of opportunity
Septin复合物在动态机会窗口期间组装
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.3
- 作者:
Andrew A. Bridges;A. Gladfelter - 通讯作者:
A. Gladfelter
Identification and analysis of the signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal
鉴定和分析控制霍乱弧菌生物膜扩散的信号通路、基质消化酶和运动成分
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Andrew A. Bridges;Chenyi Fei;B. Bassler - 通讯作者:
B. Bassler
Andrew A. Bridges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew A. Bridges', 18)}}的其他基金
This way out: Spatiotemporal regulation of Vibrio cholerae biofilm dispersal
出路:霍乱弧菌生物膜扩散的时空调控
- 批准号:
10770594 - 财政年份:2021
- 资助金额:
$ 10.92万 - 项目类别:
This way out: Spatiotemporal regulation of Vibrio cholerae biofilm dispersal
出路:霍乱弧菌生物膜扩散的时空调控
- 批准号:
10455425 - 财政年份:2021
- 资助金额:
$ 10.92万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 10.92万 - 项目类别:
Fellowship
Evaluation and application of binding ability between mycotoxin and lactic acid bacteria cell wall components using kinetic analysis.
动力学分析评价霉菌毒素与乳酸菌细胞壁成分结合能力及应用
- 批准号:
22K05515 - 财政年份:2022
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional studies of iron uptake ATP-binding cassette transporters (ABC transporters) in Gram-negative bacteria
革兰氏阴性菌中铁摄取 ATP 结合盒转运蛋白(ABC 转运蛋白)的结构和功能研究
- 批准号:
20K22561 - 财政年份:2020
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of virulence mechanism of Gram-positive bacteria regulated by various RNA binding proteins
不同RNA结合蛋白调控革兰氏阳性菌毒力机制的研究
- 批准号:
19H03466 - 财政年份:2019
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Xenophagy recognizes bacteria through carbohydrate-binding ubiquitin ligase complex
异体吞噬通过碳水化合物结合泛素连接酶复合物识别细菌
- 批准号:
18K07109 - 财政年份:2018
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on binding mechanism of lactic acid bacteria to the host via anchorless proteins
乳酸菌通过锚定蛋白与宿主结合机制的研究
- 批准号:
18K05405 - 财政年份:2018
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding DNA-binding by type IV pilins: key event during transformation in naturally competent bacteria
了解 IV 型菌毛蛋白的 DNA 结合:自然感受态细菌转化过程中的关键事件
- 批准号:
MR/P022197/1 - 财政年份:2017
- 资助金额:
$ 10.92万 - 项目类别:
Research Grant
Development of novel caries suppression method targeting polymer binding domain of plaque constituting bacteria
开发针对牙菌斑构成细菌的聚合物结合域的新型防龋方法
- 批准号:
15K20591 - 财政年份:2015
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The differing biological fates of DNA minor groove-binding (MGB) antibiotics in Gram-negative and Gram-Positive bacteria.
DNA 小沟结合 (MGB) 抗生素在革兰氏阴性和革兰氏阳性细菌中的不同生物学命运。
- 批准号:
BB/K019600/1 - 财政年份:2014
- 资助金额:
$ 10.92万 - 项目类别:
Research Grant
Domoic acid-binding substance found in bacteria isolated from causative diatom of domoic acid
从软骨藻酸致病硅藻中分离出的细菌中发现软骨藻酸结合物质
- 批准号:
23658175 - 财政年份:2011
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research