Machine learning-based segmentation and risk modeling for real-time prediction of major arterial bleeding after pelvic fractures
基于机器学习的分割和风险建模,用于实时预测骨盆骨折后大动脉出血
基本信息
- 批准号:10189581
- 负责人:
- 金额:$ 18.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Admission activityAdoptionAlgorithmsAngiographyArchitectureAreaArterial InjuryAwardBlunt TraumaCaliberCathetersCause of DeathClinicalCommunitiesComparative Effectiveness ResearchComputer ModelsComputer Vision SystemsComputer softwareCrush InjuryDataData ScienceData SetDerivation procedureDetectionDevelopmentDiagnosisEarly InterventionEngineeringEnvironmentExtravasationFundingGoalsHematomaHemorrhageHospitalizationHumanImageIndustryInterventionIntuitionK-Series Research Career ProgramsKnowledgeLabelLeadLearningLifeLogistic RegressionsMachine LearningManualsMarylandMeasurementMeasuresMedical ImagingMentorsMethodsModelingModernizationNatureObesityOutcomePatientsPelvisPredictive ValueProbability TheoryProcessProgramming LanguagesPythonsRadiology SpecialtyResearchResearch ActivityResearch PersonnelResourcesRiskScanningSensitivity and SpecificityShorthandSpeedSupervisionTechniquesTerminologyTestingTherapeutic EmbolizationThinnessTimeTrainingTransfusionTranslationsTraumaTreatment outcomeTriageUniversitiesVehicle crashWorkX-Ray Computed Tomographyadverse outcomealgorithm developmentartificial neural networkautomated segmentationbaseclinical decision-makingcomputer infrastructureconvolutional neural networkcostdeep learningdeep learning algorithmexperiencefall injuryhemodynamicsheuristicsimage processingimaging Segmentationimprovedimproved outcomelearning strategymedical schoolsmortalitymultidisciplinarymuscle formneural network architectureoutcome predictionpelvis fracturepersonalized predictionspredictive modelingpreventprimary outcomeradiologistrandom forestreal time modelrisk predictionsecondary outcomesegmentation algorithmskillsstandard of caresupport vector machinetemporal measurementtool
项目摘要
PROJECT SUMMARY/ABSTRACT: Arterial hemorrhage after pelvic fractures is a leading reversible cause of
death after blunt trauma. Prediction of arterial bleeding risk is difficult, and currently determined using
subjective criteria, often based on qualitative results of admission computed tomography (CT). Segmented
hematoma and contrast extravasation (CE) volumes predict need for angioembolization, major transfusion, and
mortality but cannot be applied in real-time. The ill-defined multi-focal nature of pelvic hematomas and CE
prevents reliable estimation using diameter-based measurements. Dr. Dreizin is a trauma radiologist at the
University of Maryland School of Medicine. His early work has focused on improving the speed and reliability of
volumetric analysis of pelvic hematomas using semi-automated techniques, and derivation of a logistic
regression-based prediction tool for major arterial injury after pelvic fractures. Dr. Dreizin’s goal for this four-
year K08 mentored career development award proposal is to gain the skills needed to 1) implement deep
learning architectures for automated hematoma volume segmentation and 2) develop computational models
for outcome prediction after pelvic trauma. These tools could greatly improve the speed and accuracy of
clinical decision making in the setting of life-threatening traumatic pelvic bleeding. Fully convolutional neural
networks (FCNs) have emerged as the most robust and scalable method for automated medical image
segmentation. Intuitive software platforms for training FCN implementations and generating multivariable
machine learning models have been developed in the Python programming environment. The training
objectives and research activities of this proposal are necessary to provide Dr. Dreizin with new skills and
practical experience in Python programming, deep learning software, and computational modeling software. By
understanding the principles and computational infrastructure behind modern machine learning, Dr. Dreizin will
be able to train and validate state-of-the-art algorithms independently and effectively lead a team of
researchers in this area. To achieve his goals, Dr. Dreizin has assembled a multidisciplinary team of mentors,
advisors, and collaborators with world-leading expertise in computer vision in medical imaging, probability
theory, data science, and comparative effectiveness research. Dr. Dreizin will focus on two specific aims. In
Aim 1, he will train and validate deep learning architectures for segmentation of traumatic pelvic hematomas
and CE by computing the Dice metric, time effort, and correlation with clinical outcomes. In Aim 2, he will
generate and test quantitative models for predicting major arterial bleeding after pelvic trauma based on a rich
multi-label dataset of segmented features. The training and pilot data will be necessary for Dr. Dreizin’s long-
term goal of research independence and R01 support to develop automated segmentation algorithms for the
spectrum of clinically important imaging features after pelvic trauma, as well as fully automated multivariable
clinical prediction tools with potential for translation to industry and as an FDA-cleared product.
项目总结/摘要:骨盆骨折后动脉出血是导致
钝伤致死动脉出血风险的预测是困难的,目前使用
主观标准,通常基于入院计算机断层扫描(CT)的定性结果。分段
血肿和造影剂外渗(CE)量预测是否需要血管栓塞、大量输血,
死亡率,但不能实时应用。盆腔血肿的多灶性不明确与CE
妨碍了使用基于直径的测量的可靠估计。Dreizin博士是一名创伤放射科医生,
马里兰州大学医学院。他的早期工作集中在提高速度和可靠性,
使用半自动化技术对盆腔血肿进行体积分析,并推导出Logistic回归方程。
骨盆骨折后主要动脉损伤的回归预测工具。德雷辛博士的目标是这四个-
K 08年辅导职业发展奖提案旨在获得1)深入实施所需的技能
自动血肿体积分割的学习架构和2)开发计算模型
用于骨盆创伤后的预后预测。这些工具可以大大提高速度和准确性
在危及生命的创伤性盆腔出血情况下的临床决策。全卷积神经
网络(FCN)已经成为自动化医学图像的最鲁棒和可扩展的方法
细分直观的软件平台,用于培训FCN实施和生成多变量
机器学习模型是在Python编程环境中开发的。培训
本提案的目标和研究活动是必要的,以提供新的技能,
Python编程、深度学习软件和计算建模软件的实践经验。通过
了解现代机器学习背后的原理和计算基础设施,Dreizin博士将
能够独立培训和验证最先进的算法,并有效地领导团队,
这方面的研究人员。为了实现他的目标,Dreizin博士组建了一个多学科的导师团队,
顾问和合作者,在医学成像,概率,计算机视觉领域拥有世界领先的专业知识
理论,数据科学和比较有效性研究。德雷辛博士将重点关注两个具体目标。在
目标1,他将训练和验证用于创伤性盆腔血肿分割的深度学习架构
和CE通过计算Dice度量、时间努力和与临床结果的相关性。在目标2中,他将
基于丰富的临床试验数据,生成并测试用于预测骨盆创伤后大动脉出血的定量模型。
分割特征的多标签数据集。训练和试验数据将是必要的德雷津博士的长期-
研究独立性和R 01支持的长期目标是为
骨盆创伤后的临床重要影像学特征谱,以及全自动多变量
临床预测工具,有可能转化为工业和FDA批准的产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dreizin其他文献
David Dreizin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dreizin', 18)}}的其他基金
Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage
以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血
- 批准号:
10566836 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Machine learning-based segmentation and risk modeling for real-time prediction of major arterial bleeding after pelvic fractures
基于机器学习的分割和风险建模,用于实时预测骨盆骨折后大动脉出血
- 批准号:
10471193 - 财政年份:2019
- 资助金额:
$ 18.62万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 18.62万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 18.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 18.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.62万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 18.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.62万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Standard Grant