Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage

以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血

基本信息

  • 批准号:
    10566836
  • 负责人:
  • 金额:
    $ 37.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Trauma is responsible for 180,000 deaths annually in the United States and accounts for 59% of deaths in the population younger than 45 years. 86% of preventable deaths are related to sequalae of massive torso hemorrhage. Rapid precision diagnostic tools are needed to triage patients for early activation of massive transfusion protocols and urgent surgical or angiographic hemostatic intervention to circumvent the vicious cycle of acidosis, coagulopathy, hypothermia, and death resulting from exsanguination. Whole-body CT angiography (WBCTA) is the workhorse screening and surgical planning modality for torso hemorrhage. Lethal but preventable hemorrhage typically arises from pelvic fractures and solid organ lacerations, manifesting on WBCTA as foci of contrast extravasation and pooled cavitary hemorrhage (e.g., pelvic hematoma, hemothorax, or hemoperitoneum). Rapid assessment of WBCTA can result in earlier intervention, with associated survival benefit, but reader fatigue, study volume, reading room distractions, and injuries involving multiple body regions remain sources of diagnostic error and interpretation delays. Assessment of organ injury severity, pelvic fracture severity, and overall hemorrhage burden remains reader dependent and subjective. Clinical tools including the Shock Index have many confounders that impede forecasting of actionable hemorrhage- related outcomes. Automated WBCTA computer aided diagnosis (CADx) tools that detect bleeding pelvic fractures and organ lacerations, classify severity grade, and deliver precise voxelwise volumetric measurements of multicavitary hemorrhage burden will greatly accelerate and standardize image analysis, reduce turnaround time for reporting of critical results, improve the accuracy and objectivity of clinical decision making, and ultimately reduce time to life-saving hemorrhage control interventions. To capitalize on the benefits of automated point-of-care CT-based CADx tools in the fast-paced, and safety critical trauma care setting, such tools must be rapid, accurate, generalizable, and elicit a high level of end-user trust. To minimize bias, ensure clinical utility, and maximize robustness for turn-key deployment in future multicenter clinical trials, the tools must scale to large diverse populations, and achieve human factors engineering goals established through expert target user input. Our team will bring to bear combined technical and clinical expertise in trauma radiology, medical image processing, and human-centered software design to create an orchestrated suite of rapid, accurate, clinically relevant, and user-centered CADx tools for torso hemorrhage. In Aim 1, we will curate and annotate a uniquely large dataset of consecutively selected admission trauma WBCTAs. In Aim 2, we will use this big data approach and human-centered design principles to develop a suite of interactive high-trust CADx tools. In Aim 3, we will assess generalizability with a large out-of-sample dataset and assess user acceptance with simulated deployment. The work will result in rapid, robust, and human-centered CADx tools for detection, precision diagnostics, and personalized decision support for hemorrhage-control interventions.
在美国,创伤每年造成18万人死亡,占美国死亡人数的59%。 45岁以下的人口。86%的可预防死亡与巨大躯干的后遗症有关 出血需要快速精确的诊断工具来对患者进行分类,以便早期激活大规模 输血方案和紧急手术或血管造影止血干预,以避免恶性 酸中毒、凝血障碍、体温过低和失血导致的死亡循环。全身CT 血管造影(WBCTA)是躯干出血的主要筛查和手术计划模式。致命 但可预防的出血通常来自骨盆骨折和实体器官撕裂, WBCTA作为造影剂外渗和合并腔出血的病灶(例如,盆腔血肿血胸 或腹腔积血)。快速评估WBCTA可导致早期干预,相关生存率 受益,但读者疲劳,研究量,阅读室分心,并涉及多个身体伤害 各区域仍然是诊断错误和口译延误的根源。器官损伤严重程度评估, 骨盆骨折严重程度和总体出血负担仍然依赖于读者和主观。临床 包括休克指数在内的工具有许多妨碍预测可采取措施的出血的混杂因素- 相关成果。检测盆腔出血的自动WBCTA计算机辅助诊断(CADx)工具 骨折和器官撕裂,分类严重程度等级,并提供精确的体素体积 多腔出血负荷的测量将极大地加速和标准化图像分析, 缩短报告关键结果的周转时间,提高临床决策的准确性和客观性 制定并最终减少挽救生命的出血控制干预措施的时间。利用这一 基于CT的自动化床旁CADx工具在快节奏和安全关键创伤护理中的优势 为了提高对环境的认识,这些工具必须快速、准确、可推广,并获得最终用户的高度信任。以最小化 偏倚,确保临床实用性,并最大限度地提高未来多中心临床试验中交钥匙部署的稳健性, 这些工具必须能够扩展到大量不同的人群,并实现所建立的人因工程目标 通过专家目标用户输入。我们的团队将结合创伤方面的技术和临床专业知识, 放射学,医学图像处理和以人为本的软件设计,以创建一个协调的套件, 快速、准确、临床相关且以用户为中心的躯干出血CADx工具。在目标1中,我们将 并注释连续选择的入院创伤WBCTA的唯一大数据集。在目标2中,我们将 使用这种大数据方法和以人为本的设计原则,开发一套互动的高信任 CADx工具。在目标3中,我们将使用大型样本外数据集评估可推广性,并评估用户 接受模拟部署。这项工作将产生快速、强大且以人为本的CADx工具 用于检测、精确诊断和个性化的决策支持,以进行预防控制干预。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Dreizin其他文献

David Dreizin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Dreizin', 18)}}的其他基金

Machine learning-based segmentation and risk modeling for real-time prediction of major arterial bleeding after pelvic fractures
基于机器学习的分割和风险建模,用于实时预测骨盆骨折后大动脉出血
  • 批准号:
    10189581
  • 财政年份:
    2019
  • 资助金额:
    $ 37.64万
  • 项目类别:
Machine learning-based segmentation and risk modeling for real-time prediction of major arterial bleeding after pelvic fractures
基于机器学习的分割和风险建模,用于实时预测骨盆骨折后大动脉出血
  • 批准号:
    10471193
  • 财政年份:
    2019
  • 资助金额:
    $ 37.64万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 37.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了