Reconstruction and Modeling of Dynamical Molecular Networks
动态分子网络的重建和建模
基本信息
- 批准号:10189695
- 负责人:
- 金额:$ 33.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-06 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBehaviorBindingBiologicalBiologyBiomedical ResearchCell CycleCell Cycle ProgressionCellsCollaborationsCommunitiesDataDetectionDevelopmentDimensionsDiseaseEmbryoEtiologyEvolutionFibroblastsFunctional disorderGenerationsGeneticGenetic TranscriptionGrainHumanIn VitroKnowledgeLeadLeast-Squares AnalysisLettersLinear ModelsMalignant NeoplasmsMammalian CellMeasurementMethodologyMethodsModelingModernizationMolecularMusNatureNeural Network SimulationNeurodegenerative DisordersNeuronsPathway interactionsPharmacologyPhenotypePhysicsPluripotent Stem CellsPropertyProteinsPythonsResearchSeriesSpace ModelsStatistical MethodsSystemTestingTherapeutic InterventionTimeTissuesValidationalgorithmic methodologiesbasebiological systemscancer therapycomputer frameworkdata reductionexperimental studygene therapyhuman pluripotent stem cellinduced pluripotent stem cellinsightmathematical modelmolecular modelingnetwork modelsneuron developmentpredictive modelingpublic repositoryreconstructionresponsesimulationtargeted treatmenttoolweb based interfaceweb site
项目摘要
Reconstruction and Modeling of Dynamical Molecular Networks: Abstract
Biological networks and their quantitative models can provide mechanistic insights into pathophysiology of
diseases as well as identify potential targets for therapeutic intervention. The quantitative models can be used
for hypotheses generation through simulation of perturbations of key molecules and tested experimentally
through pharmacological or genetic perturbations. This project deals with the development and implementation
of algorithms and methodologies for causal inference, analysis and modeling of molecular and modular networks
from large-scale temporal molecular data incorporating a priori knowledge related to biological pathways and
functions. The dynamical and nonlinear nature of biological systems will be captured through successive linear
models by identifying different temporal regimes in the time-course data. The temporal regimes will be identified
through a change-point detection algorithm. The change-points potentially reflect mechanistic changes in the
biological system. Then, a stable least absolute shrinkage and selection operator approach incorporating partial
least squares will be used to infer the potentially causal networks and develop models for specific pathways. We
will incorporate time-delay in our state-space modeling approach to identify if the data from the past contributes
significantly to prediction of the current value. Since both inference and interpretation of large (causal) molecular
networks from temporal data at the whole-systems level with thousands of components/molecules is prohibitively
challenging, modules corresponding to various biological pathways, mechanisms and functions will be identified
by integrating the quantitative temporal data and a priori biological knowledge. The hub-molecules or centroids
of the modules will serve as state-variables in a reduced-dimensional state-space and they will be used to infer
the networks and develop state-space models. The temporal evolution of the networks across various regimes
will be rigorously analyzed by performing both qualitative and quantitative comparisons of the networks. The
modular networks will also be compared with the corresponding coarse-grained versions of the detailed
molecular networks as internal validation. External validations will include comparison with existing mechanistic
models, if any. The predictive models of the networks will be used to generate experimentally testable
hypotheses regarding temporally specific pharmacological perturbations of key proteins. While these
methodologies will be applicable for many biological systems, in this project they will be applied to two systems,
viz., 1) cell-cycle progression in mouse embryonic fibroblasts, important for the study of molecular mechanisms
of cancer, and 2) differentiation of human induced pluripotent stem cells into neurons, important for the study of
neurodegenerative diseases. The methods will be applied to simulated data as well. Statistical tools such as R
and python will be used to implement the algorithms and methods and the resulting packages and tutorials will
be made available to the research community through a PHP-based project website and public repositories such
as GitHub and SourceForge.
动态分子网络的重构与建模
生物网络及其定量模型可以提供对疾病病理生理学的机制性见解,
疾病以及确定治疗干预的潜在目标。定量模型可用于
通过模拟关键分子的扰动生成假设,并进行实验验证
通过药理学或遗传学的干扰。该项目涉及开发和实施
因果推理、分子和模块网络分析和建模的算法和方法
从包含与生物途径相关的先验知识的大规模时间分子数据,
功能协调发展的生物系统的动力学和非线性性质将通过连续的线性
通过识别时程数据中的不同时间机制来建立模型。将确定时间制度
通过变化点检测算法。变化点可能反映了
生物系统。然后,一个稳定的最小绝对收缩和选择算子的方法,
最小二乘法将用于推断潜在的因果关系网络,并为特定途径建立模型。我们
将在我们的状态空间建模方法中加入时间延迟,以确定过去的数据是否有助于
对当前值的预测有很大影响。由于大(因果)分子的推断和解释
从具有数千个组件/分子的整个系统级别的时间数据构建网络是令人望而却步的
具有挑战性,将确定与各种生物途径,机制和功能相对应的模块
通过整合定量时间数据和先验生物学知识。枢纽分子或质心
的模块将作为降维状态空间中的状态变量,它们将用于推断
网络和开发状态空间模型。不同制度下网络的时间演变
将通过对网络进行定性和定量比较进行严格分析。的
模块化网络也将与相应的粗粒度版本的详细
分子网络作为内部验证。外部确认将包括与现有机制的比较
模型,如果有的话。网络的预测模型将用于生成实验可测试的
关于关键蛋白质的时间特异性药理学扰动的假设。虽然这些
方法学将适用于许多生物系统,在本项目中,它们将应用于两个系统,
也就是,1)小鼠胚胎成纤维细胞的细胞周期进程,对分子机制研究具有重要意义
2)人类诱导多能干细胞分化为神经元,这对研究
神经退行性疾病这些方法也将应用于模拟数据。统计工具,如R
和python将被用来实现算法和方法,所产生的包和教程将
通过一个基于PHP的项目网站和公共知识库,
GitHub和SourceForge。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limitations of the human iPSC-derived neuron model for early-onset Alzheimer's disease.
- DOI:10.1186/s13041-023-01063-5
- 发表时间:2023-11-03
- 期刊:
- 影响因子:3.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shankar Subramaniam其他文献
Shankar Subramaniam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shankar Subramaniam', 18)}}的其他基金
National Metabolomics Data Repository - nextgen Metabolomics Workbench
国家代谢组学数据存储库 - nextgen Metabolomics Workbench
- 批准号:
10202576 - 财政年份:2018
- 资助金额:
$ 33.76万 - 项目类别:
Reconstruction and Modeling of Dynamical Molecular Networks
动态分子网络的重建和建模
- 批准号:
9756474 - 财政年份:2018
- 资助金额:
$ 33.76万 - 项目类别:
National Metabolomics Data Repository - nextgen Metabolomics Workbench
国家代谢组学数据存储库 - nextgen Metabolomics Workbench
- 批准号:
9766276 - 财政年份:2018
- 资助金额:
$ 33.76万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
RUI: CAS-MNP: Molecular Behavior at Colloidal/Aqueous Interfaces of Heterogeneous Nano- and Micro-Plastics - Binding Interactions and Effect of Aging
RUI:CAS-MNP:异质纳米和微米塑料胶体/水界面的分子行为 - 结合相互作用和老化效应
- 批准号:
2304814 - 财政年份:2023
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
Synthesis of Liquid-Crystalline Viologen Compounds with Flexible Ion Binding Sites and Their Photo-Responsive Behavior
具有灵活离子结合位点的液晶紫罗碱化合物的合成及其光响应行为
- 批准号:
17K14532 - 财政年份:2017
- 资助金额:
$ 33.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Identifying Neurosensory Solutions to the Binding Problem in Animal Behavior
确定动物行为中约束问题的神经感觉解决方案
- 批准号:
1452831 - 财政年份:2015
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant
Development of cryptand molecules of multiple ligation with allosteric binding behavior
具有变构结合行为的多重连接的穴状配体分子的开发
- 批准号:
21550045 - 财政年份:2009
- 资助金额:
$ 33.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The biological role of odorant-binding proteins in insect behavior
气味结合蛋白在昆虫行为中的生物学作用
- 批准号:
21688003 - 财政年份:2009
- 资助金额:
$ 33.76万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Control of interfacial behavior through lipid domain formation, ligand-receptor binding and their synergetic effect
通过脂质域形成、配体-受体结合及其协同效应控制界面行为
- 批准号:
0828046 - 财政年份:2008
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant
Occurence and Mechanisms of Antibody-Antigen Allosteric Binding Behavior
抗体-抗原变构结合行为的发生和机制
- 批准号:
6727039 - 财政年份:2004
- 资助金额:
$ 33.76万 - 项目类别:
Evaluation of anticoagulant behavior of thrombin-inhibiting polymer with fibrinolytic factor-binding sites and application for biomaterials
具有纤溶因子结合位点的凝血酶抑制聚合物的抗凝行为评价及其在生物材料中的应用
- 批准号:
14580840 - 财政年份:2002
- 资助金额:
$ 33.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AnaIysis of dynamic behavior of ribonuclease upon ligand binding using high resolution NMR
使用高分辨率 NMR 分析配体结合时核糖核酸酶的动态行为
- 批准号:
12672088 - 财政年份:2000
- 资助金额:
$ 33.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shear Resisting Behavior of Reinforced Concrete Columns Under Biaxial Binding-Shear and Varying Axial Load
双轴绑剪和变轴荷载作用下钢筋混凝土柱的抗剪性能
- 批准号:
63460169 - 财政年份:1988
- 资助金额:
$ 33.76万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)