Reclassifying Pulmonary Arterial Hypertension Into Immune Phenotypes Using Machine Learning
使用机器学习将肺动脉高压重新分类为免疫表型
基本信息
- 批准号:10192823
- 负责人:
- 金额:$ 19.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBioinformaticsBiologicalBiological MarkersBiologyBiometryBloodCellsClassificationClassification SchemeClinicalClinical TrialsClinical Trials DesignCollaborationsComplexComputing MethodologiesCritical CareDNA Sequence AlterationDataDevelopmentDiseaseDisease ProgressionEvolutionFoundationsFunctional disorderGenesGeneticGrowth FactorImmuneImmune TargetingImmunityImmunologyImmunomodulatorsInflammationInflammatoryInvestigationLeadLinkLungMachine LearningMentored Patient-Oriented Research Career Development AwardMentorsMolecularMononuclearMorbidity - disease rateNetwork-basedOutcomePathway AnalysisPathway interactionsPatientsPatternPharmaceutical PreparationsPhenotypePhysiciansPlasmaPublic HealthRare DiseasesResearchResearch PersonnelRestRoleSamplingSelection for TreatmentsSeveritiesSeverity of illnessSignal PathwaySystemSystemic diseaseTestingTherapeuticTimeToxinTranscriptTranslatingUniversitiesVariantWorkbasebiobankbiomarker discoverycareerchemokineclinical phenotypeclinical subtypescohortcomputerized toolscytokinedata repositorydesigndifferential expressiondisorder riskexperienceimprovedinnovationinsightmolecular phenotypemortalitymultidisciplinarynoveloverexpressionpatient subsetsprecision medicineprospectiveprotein complexpublic repositorypulmonary arterial hypertensionresponsetargeted treatmenttherapeutic targettranscriptomicstrend
项目摘要
This is a K23 award application for Dr. Andrew Sweatt, a pulmonary/critical care physician and young investigator
at Stanford University who is establishing a niche in pulmonary arterial hypertension (PAH) precision
phenotyping. His work centers on using machine learning to reclassify PAH, where hidden patterns are detected
in high-throughput molecular data to uncover new phenotypes. The existing PAH clinical classification does not
inform therapy decisions, and outcomes are overall poor with a ‘one-size-fits-all’ treatment approach. There is a
critical need for molecular phenotyping efforts, to develop classification schemes that sit closer to pathobiology
and identify therapeutically-targetable patient subsets. Dr. Sweatt’s K23 builds on an innovative foundational
study where he used machine learning to cluster PAH patients based on blood immune profiling, without
guidance from clinical features. This agnostic approach uncovered 4 immune phenotypes with distinct cytokine
profiles that are independent of clinical subtypes and stratify disease risk. These findings indicate that
inflammation is a viable platform for PAH reclassification. Extensive research has implicated inflammation in
PAH and multiple immune-targeting therapies are under active investigation, but these studies rest on the
assumption that a common pathophenotype exists. The objective of Dr. Sweatt’s K23 is to better understand
PAH immune phenotypes in terms of their longitudinal evolution, mechanistic underpinnings, and therapeutic
implications. First, he will perform serial cytokine profiling in two observational cohorts (Stanford, USA; Sheffield,
UK) to reassess immune phenotypes during the disease course (Aim 1). Based on preliminary data, dynamic
phenotype switches may occur in some patients and reflect changes in clinical disease severity. Next, he will
integrate blood transcriptomic profiling and apply sophisticated computational tools to provide phenotype-specific
mechanistic insights (Aim 2). He postulates that distinct transcriptomic profiles will link phenotypes to specific
signaling pathways and immune cell subsets. Findings will be validated using multi-cohort data from public
repositories. Finally, he will perform post-hoc cytokine profiling in two recent PAH trial cohorts where immune
modulators were tested, to assess if therapy responses differ across phenotypes (Aim 3). His research could
help identify patients who will respond to specific therapies, inform clinical trial designs, lead to biomarker
discovery, and define novel biology in PAH. The K23 will provide Dr. Sweatt with the critical support needed to
transition to an independent research career and be a leader in PAH precision phenotyping. His K23 objectives
are to gain experience in PAH clinical phenotyping/cohort building, expand expertise in bioinformatics, cultivate
collaboration, and translate findings to new hypotheses for R01 development. He will be guided by a committed
team of multidisciplinary mentors (Roham Zamanian [expert in PAH clinical trial design/biomarkers], Marlene
Rabinovitch [leader in translational PAH research], and Purvesh Khatri [pioneer in bioinformatics]) and scientific
advisors (Mark Nicolls [translational PAH immunology], PJ Utz [immunology], and Manisha Desai [biostatistics]).
这是一个K23奖申请安德鲁Sweatt博士,肺/重症监护医生和年轻的研究者
在斯坦福大学,他正在建立一个肺动脉高压(PAH)精确度的利基市场,
表型分析他的工作集中在使用机器学习来重新分类PAH,其中隐藏的模式被检测到
在高通量分子数据中发现新的表型。现有PAH临床分类不
知情的治疗决定,结果是整体较差的“一刀切”的治疗方法。有一个
迫切需要分子表型的努力,发展分类方案,坐在更接近病理生物学
并识别可治疗的患者亚群。Sweatt博士的K23建立在一个创新的基础上,
在这项研究中,他使用机器学习根据血液免疫分析对PAH患者进行聚类,
从临床特点指导。这种不可知的方法发现了4种具有不同细胞因子的免疫表型
独立于临床亚型和分层疾病风险的特征。这些发现表明
炎症是PAH重新分类的可行平台。广泛的研究表明,
PAH和多种免疫靶向治疗正在积极研究中,但这些研究依赖于
假设存在共同的病理表型。Sweatt博士的K23的目标是更好地理解
PAH免疫表型的纵向演变、机制基础和治疗
影响首先,他将在两个观察组群(斯坦福大学,美国;谢菲尔德,
UK)重新评估疾病过程中的免疫表型(目的1)。根据初步数据,动态
表型转换可能发生在一些患者中,并反映临床疾病严重程度的变化。接下来,他将
整合血液转录组分析并应用复杂计算工具来提供表型特异性
机械的洞察力(目标2)。他假设不同的转录组特征将表型与特定的
信号通路和免疫细胞亚群。将使用来自公众的多队列数据验证结果
储存库。最后,他将在最近的两个PAH试验队列中进行事后细胞因子分析,
测试了调节剂,以评估治疗应答是否在表型之间不同(目的3)。他的研究可以
帮助识别对特定疗法有反应的患者,为临床试验设计提供信息,
发现和定义PAH的新生物学。K23将为Sweatt博士提供所需的关键支持,
过渡到独立的研究生涯,并成为PAH精确表型分析的领导者。K23目标
获得PAH临床表型/队列建立的经验,扩展生物信息学专业知识,培养
合作,并将研究结果转化为R 01发展的新假设。他将被一个坚定的
多学科导师团队(Roham Zamanian [PAH临床试验设计/生物标志物专家],Marlene
Rabinovitch [翻译PAH研究的领导者]和Purvesh Khatri [生物信息学的先驱])和科学
顾问(Mark Nicolls [翻译PAH免疫学]、PJ乌茨[免疫学]和Manisha Desai [生物统计学])。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew John Sweatt其他文献
Andrew John Sweatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew John Sweatt', 18)}}的其他基金
Reclassifying Pulmonary Arterial Hypertension Into Immune Phenotypes Using Machine Learning
使用机器学习将肺动脉高压重新分类为免疫表型
- 批准号:
10613995 - 财政年份:2020
- 资助金额:
$ 19.35万 - 项目类别:
Reclassifying Pulmonary Arterial Hypertension Into Immune Phenotypes Using Machine Learning
使用机器学习将肺动脉高压重新分类为免疫表型
- 批准号:
10402906 - 财政年份:2020
- 资助金额:
$ 19.35万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 19.35万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 19.35万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 19.35万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 19.35万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 19.35万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 19.35万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 19.35万 - 项目类别:
Discovery Grants Program - Individual