Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters

利用大数据个性化 AAV 管理:针对并发症集群

基本信息

  • 批准号:
    10198103
  • 负责人:
  • 金额:
    $ 10.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY ANCA-associated vasculitis (AAV) is a small vessel vasculitis associated with disease- and treatment-related complications that contribute to reduced quality of life and excess mortality compared to the general population. In the context of improving rates of flare and mortality with contemporary treatments, increasing attention is shifting to complications (e.g., renal failure, infection, cardiovascular disease) as clinically-relevant and patient-oriented outcomes. However, our understanding of how best to address and prevent complications is limited because they are typically studied in isolation from a “single disease framework.” We do not understand how complications tend to co-occur in individuals in complication clusters. Moreover, with several available treatment options for AAV, comparative effectiveness studies using real-world experience data and relevant outcomes like complication clusters are needed to guide treatment decisions in a manner that personalizes care, improves quality of life, and reduces mortality. However, we do not have the methods to accurately and efficiently assemble an AAV cohort using state-of-the-art algorithms that leverage heterogeneous claims and electronic health record (EHR) data. The aims of this proposal are to (1) apply advanced clinical informatics methods (i.e., machine learning and natural language processing) to identify AAV cases in big data to assemble a large cohort and (2) determine complication clusters in an AAV cohort by applying latent transition analysis. To achieve these aims, we will leverage methodologic expertise developed through collaborations established during the PI’s K23 and use a novel data source that includes EHR data linked to Medicare and Medicaid claims. The PI’s team has previously demonstrated that unstructured (i.e., free-text) EHR data can be used to study topics mentioned in clinical notes of AAV patients and that keywords in these notes can help identify AAV patients but neither machine learning nor sophisticated natural language processing have been previously used to identify AAV cases. In addition, our prior work has examined AAV complications in isolation (e.g., renal disease, cardiovascular disease) but here we seek to identify phenotypes of complications (complication clusters) that tend to co-occur in patients, how patients transition between clusters over time, and what factors predict a person’s membership in a complication cluster. The major goal of this proposal is to build further preliminary data in preparation for an R01 application over the next 24 months. The planned R01 will focus on comparative effectiveness studies in AAV using cohorts assembled in big data and clinically-relevant, patient-oriented outcomes, like complication clusters. The results of these studies can then be used as inputs in simulation models built during my K23 to guide optimal patient-oriented treatment decisions. Ultimately, the goal of this research program is to improve quality of life and reduce complications and mortality by using data to inform personalized approaches to AAV treatment.
项目总结 ANCA相关性血管炎(AAV)是一种与疾病和治疗相关的小血管炎。 与一般情况相比,导致生活质量下降和死亡率过高的并发症 人口。在用现代治疗方法改善红斑率和死亡率的背景下, 注意力正在转移到与临床相关的并发症(例如,肾功能衰竭、感染、心血管疾病)上 和以病人为导向的结果。然而,我们对如何最好地处理和预防并发症的理解 是有限的,因为它们通常是从“单一疾病框架”中孤立地进行研究的。我们不会 了解并发症如何在并发症集群中的个体中同时发生。此外,有几个 AAV的可用治疗方案,使用真实世界经验数据和 需要相关的结果,如并发症组,以指导治疗决定 个性化护理,提高生活质量,降低死亡率。然而,我们没有方法来 使用先进的算法准确高效地组装AAV队列,该算法利用 异类索赔和电子健康记录(EHR)数据。本提案的目的是(1)适用于 先进的临床信息学方法(即机器学习和自然语言处理)来识别AAV 通过以下方式确定AAV队列中的并发症群: 应用潜伏期分析。为了实现这些目标,我们将利用开发的方法专业知识 通过在PI的K23期间建立的协作,并使用包括EHR数据的新数据源 与医疗保险和医疗补助申请有关。PI的团队先前已经证明了非结构化(即, 自由文本)EHR数据可用于研究AAV患者临床笔记中提到的主题和关键词 这些笔记可以帮助识别AAV患者,但无论是机器学习还是复杂的自然语言 以前曾使用处理程序来识别AAV病例。此外,我们之前的工作已经检查了AAV 隔离的并发症(例如,肾脏疾病、心血管疾病),但在这里我们试图确定表型 容易在患者身上同时发生的并发症(并发症群),患者如何在 随着时间的推移而聚集,以及什么因素预测一个人在复杂聚集中的成员资格。的主要目标是 这项提议是为了建立更多的初步数据,为未来24个月的R01申请做准备。 计划中的R01将专注于使用大数据中集合的队列进行AAV的比较有效性研究 以及与临床相关的、以患者为导向的结果,如并发症集群。这些研究的结果可以 然后在我的K23期间建立的模拟模型中用作输入,以指导以患者为中心的最佳治疗 决定。归根结底,这个研究项目的目标是提高生活质量,减少并发症 通过使用数据为AAV治疗的个性化方法提供信息,从而降低死亡率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachary Scott Wallace其他文献

Clinical characteristics and outcomes of COVID-19 breakthrough infections among vaccinated patients with systemic autoimmune rheumatic diseases
接种疫苗的系统性自身免疫性风湿病患者中 COVID-19 突破性感染的临床特征和结果
  • DOI:
    10.1136/annrheumdis-2021-221326
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    20.600
  • 作者:
    Claire Cook;Naomi J Patel;Kristin M. D’Silva;Tiffany Y -T Hsu;Michael DiIorio;Lauren Prisco;Lily W Martin;Kathleen Vanni;Alessandra Zaccardelli;Derrick Todd;Jeffrey A Sparks;Zachary Scott Wallace
  • 通讯作者:
    Zachary Scott Wallace

Zachary Scott Wallace的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachary Scott Wallace', 18)}}的其他基金

Personalizing AAV Management by Leveraging Big Data: Targeting Complication Clusters
利用大数据个性化 AAV 管理:针对并发症集群
  • 批准号:
    10369732
  • 财政年份:
    2021
  • 资助金额:
    $ 10.58万
  • 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
  • 批准号:
    10292270
  • 财政年份:
    2021
  • 资助金额:
    $ 10.58万
  • 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
  • 批准号:
    9886161
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:
Impact of ANCA Type and Rituximab vs. Cyclophosphamide on Cardiovascular Risk, Mortality, and Quality-Adjusted Life Years inANCA-Associated Vasculitis
ANCA 类型和利妥昔单抗与环磷酰胺对 ANCA 相关性血管炎的心血管风险、死亡率和质量调整生命年的影响
  • 批准号:
    10372989
  • 财政年份:
    2018
  • 资助金额:
    $ 10.58万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了