Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors

使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测

基本信息

  • 批准号:
    10200346
  • 负责人:
  • 金额:
    $ 99.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT Aura is a digital health platform that uses Epilog™, a miniature, wireless, wearable EEG sensor worn on the scalp below hairline that can record clinical and subclinical seizures. After an initial diagnosis of epilepsy, an epileptologist will use known information about patients’ seizures to guide the best scalp location to place the Epilog EEG sensor (A). EEG data is continuously transferred (B) to the Aura app on a person’s smartphone (C) using secure BluetoothTM where it communicates over WiFi (D) to the Aura cloud platform (E). Epilog EEG is analyzed for seizures and a daily digital seizure diary is shared with epileptologists (F) and pushed back to the Aura app (G). Epilog is recharged daily, and reusable for a year. Epilog is designed to be discreet, allowing for continuous use in all facets of daily life. Data are a 10 s snippet of the beginning of a focal seizure with motor impairment and intact awareness (ILAE 1A1) recorded from Epitel’s single-channel Epilog sensor placed on the left forehead. The patient was admitted for video-EEG monitoring as standard-of-care. This seizure was verified independently by three epileptologists. In Phase I, automated, machine learning-based seizure detection algorithms will be designed to first work in the Aura cloud to detect seizures in Epilog EEG, including seizures a person may not consciously know they are having (>50% of all seizures), such as while sleeping. Aura will run these algorithms developed exclusively for Epilog’s single-channel of EEG to provide a daily digital seizure diary. In Phase II, the Aura system will enter clinical validation trials for FDA clearance as an EEG-based automated home seizure detection and alerting system. Early in Phase II Aura will be commercialized as a medical device-enabled-service business model. Out-of-pocket costs for a person living with epilepsy is an average of $380/year. Armed with long-term, reproducible EEG, epileptologists will now have a more precise, quantitative record of seizure counts, enabling them to adapt patient treatment more rapidly and successfully to improve quality of life. Aura will give people living with epilepsy their lives back. Aura provides certainty where you are and when you need it. Throughout Phase II, physiological, psychological, behavioral, and environmental factors will be combined in the Aura app to collect 27,000 days of multi-modal data from 300 patients to create an unprecedented dataset of features known to precipitate seizures. These data will be used in Phase III to create a robust, wearable seizure forecasting system using artificial intelligence that combines multi-modal seizure precipitating factors, creating an hourly seizure probability. Aura will profoundly disrupt how epilepsy is managed and improve the quality of life of people living with epilepsy.
摘要 Aura是一个使用Epilog™的数字健康平台,Epilog ™是一种微型、无线、可穿戴的EEG传感器, 发际线以下的头皮,可以记录临床和亚临床发作。在初步诊断为癫痫后, 癫痫病学家将使用有关患者癫痫发作的已知信息来指导最佳头皮位置放置 Epilog EEG传感器(A)。EEG数据连续传输(B)到个人智能手机上的Aura应用程序(C) 使用安全的蓝牙TM,通过WiFi(D)与Aura云平台(E)通信。Epilog EEG是 分析癫痫发作情况,并与癫痫病学家(F)分享每日数字癫痫发作日记,并推回给 Aura app(G). Epilog每天充电,可重复使用一年。Epilog的设计非常谨慎, 在日常生活的各个方面持续使用。 数据是一个10秒的片段开始的局灶性癫痫与运动障碍和完整的意识(ILAE 图1A 1)从放置在左前额上的Epitel的单通道Epilog传感器记录。患者入院 视频脑电图监测作为标准治疗这次癫痫发作由三位癫痫病学家独立证实。 在第一阶段,基于机器学习的自动化癫痫发作检测算法将被设计为首先在 先兆云在Epilog EEG中检测癫痫发作,包括一个人可能没有意识到的癫痫发作 有(>50%的癫痫发作),如在睡觉时。Aura将运行这些专门为 Epilog的单通道EEG提供每日数字化癫痫日记。 在第二阶段,Aura系统将作为一种基于EEG的自动化系统进入FDA批准的临床验证试验。 家庭癫痫检测和警报系统。在第二阶段的早期,Aura将作为一种医疗器械商业化。 设备支持服务的商业模式。癫痫患者的自付费用平均为 380元/年有了长期的、可重复的脑电图,癫痫学家现在将有一个更精确的、定量的 记录癫痫发作次数,使他们能够更迅速、更成功地调整患者治疗, 生活质量Aura将使癫痫患者恢复正常生活。Aura为你提供了确定性 在整个第二阶段,生理、心理、行为和环境因素 将结合到Aura应用程序中,从300名患者收集27,000天的多模式数据,以创建 前所未有的数据集的特征已知的沉淀癫痫发作。 这些数据将用于第三阶段,以创建一个强大的,可穿戴的癫痫发作预测系统, 智能结合多模态癫痫发作诱发因素,创造一个小时的癫痫发作概率。 Aura将深刻地颠覆癫痫的管理方式,并改善癫痫患者的生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark J. Lehmkuhle其他文献

Mark J. Lehmkuhle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark J. Lehmkuhle', 18)}}的其他基金

Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
  • 批准号:
    10402377
  • 财政年份:
    2021
  • 资助金额:
    $ 99.99万
  • 项目类别:
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
  • 批准号:
    10710337
  • 财政年份:
    2021
  • 资助金额:
    $ 99.99万
  • 项目类别:
EEG Patch
脑电图贴片
  • 批准号:
    9254379
  • 财政年份:
    2016
  • 资助金额:
    $ 99.99万
  • 项目类别:
REMI Platform for Remote EEG Monitoring
用于远程脑电图监测的 REMI 平台
  • 批准号:
    10383365
  • 财政年份:
    2016
  • 资助金额:
    $ 99.99万
  • 项目类别:
REMI Platform for Remote EEG Monitoring
用于远程脑电图监测的 REMI 平台
  • 批准号:
    10548863
  • 财政年份:
    2016
  • 资助金额:
    $ 99.99万
  • 项目类别:
EEG Patch
脑电图贴片
  • 批准号:
    9767292
  • 财政年份:
    2016
  • 资助金额:
    $ 99.99万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了