Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
基本信息
- 批准号:10402377
- 负责人:
- 金额:$ 99.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsApplications GrantsArtificial IntelligenceAurasAwarenessBackBehavioralBluetoothBusinessesCellular PhoneClinicalCommunity HospitalsConsumptionCuesDataData CollectionData SetDetectionDevelopmentDiagnosisElectroencephalographyEmergency MedicineEnvironmentEnvironmental Risk FactorEpilepsyEventFamilyFinancial HardshipFocal SeizureForeheadFreedomGoalsGoldHomeHospitalsHourLeftLifeLocationMachine LearningManualsMedical DeviceMethodsModelingMonitorMorphologic artifactsMotionNeurologicPaperPatient Self-ReportPatientsPeriodicityPersonsPhasePhysiologicalPrecipitating FactorsPredispositionProbabilityProcessQuality of lifeReproducibilityRunningScalp structureScreening procedureSecureSeizuresServicesSleepSubclinical SeizuresSystemTimeValidationWorkbasecloud platformcostdesigndiariesdigitaldigital healtheffective therapyencryptionimprovedmachine learning algorithmmotor impairmentmultimodal datamultimodalityoptimal treatmentsprogramspsychologicremote monitoringsensorsocialstandard of carewireless
项目摘要
ABSTRACT
Aura is a digital health platform that uses Epilog™, a miniature, wireless, wearable EEG sensor worn on the
scalp below hairline that can record clinical and subclinical seizures. After an initial diagnosis of epilepsy, an
epileptologist will use known information about patients’ seizures to guide the best scalp location to place the
Epilog EEG sensor (A). EEG data is continuously transferred (B) to the Aura app on a person’s smartphone (C)
using secure BluetoothTM where it communicates over WiFi (D) to the Aura cloud platform (E). Epilog EEG is
analyzed for seizures and a daily digital seizure diary is shared with epileptologists (F) and pushed back to the
Aura app (G). Epilog is recharged daily, and reusable for a year. Epilog is designed to be discreet, allowing for
continuous use in all facets of daily life.
Data are a 10 s snippet of the beginning of a focal seizure with motor impairment and intact awareness (ILAE
1A1) recorded from Epitel’s single-channel Epilog sensor placed on the left forehead. The patient was admitted
for video-EEG monitoring as standard-of-care. This seizure was verified independently by three epileptologists.
In Phase I, automated, machine learning-based seizure detection algorithms will be designed to first work in the
Aura cloud to detect seizures in Epilog EEG, including seizures a person may not consciously know they are
having (>50% of all seizures), such as while sleeping. Aura will run these algorithms developed exclusively for
Epilog’s single-channel of EEG to provide a daily digital seizure diary.
In Phase II, the Aura system will enter clinical validation trials for FDA clearance as an EEG-based automated
home seizure detection and alerting system. Early in Phase II Aura will be commercialized as a medical
device-enabled-service business model. Out-of-pocket costs for a person living with epilepsy is an average of
$380/year. Armed with long-term, reproducible EEG, epileptologists will now have a more precise, quantitative
record of seizure counts, enabling them to adapt patient treatment more rapidly and successfully to improve
quality of life. Aura will give people living with epilepsy their lives back. Aura provides certainty where you are
and when you need it. Throughout Phase II, physiological, psychological, behavioral, and environmental factors
will be combined in the Aura app to collect 27,000 days of multi-modal data from 300 patients to create an
unprecedented dataset of features known to precipitate seizures.
These data will be used in Phase III to create a robust, wearable seizure forecasting system using artificial
intelligence that combines multi-modal seizure precipitating factors, creating an hourly seizure probability.
Aura will profoundly disrupt how epilepsy is managed and improve the quality of life of people living with epilepsy.
抽象的
Aura 是一个数字健康平台,使用 Epilog™,这是一种佩戴在患者身上的微型无线可穿戴脑电图传感器
发际线以下的头皮,可以记录临床和亚临床癫痫发作。初步诊断为癫痫后,
癫痫专家将利用有关患者癫痫发作的已知信息来指导放置治疗的最佳头皮位置
Epilog EEG 传感器 (A)。脑电图数据不断传输 (B) 至个人智能手机上的 Aura 应用程序 (C)
使用安全蓝牙™,通过 WiFi (D) 与 Aura 云平台 (E) 进行通信。 Epilog 脑电图是
分析癫痫发作情况,并与癫痫专家 (F) 共享每日数字癫痫发作日记并推送回
光环应用程序 (G)。 Epilog 每天充电,可重复使用一年。 Epilog 设计谨慎,允许
在日常生活的各个方面持续使用。
数据是局灶性癫痫发作开始时的 10 秒片段,伴有运动障碍和完整意识(ILAE
1A1)由放置在左额头上的 Epitel 单通道 Epilog 传感器记录。病人被收治入院
将视频脑电图监测作为护理标准。这次癫痫发作由三名癫痫专家独立证实。
在第一阶段,基于机器学习的自动化癫痫检测算法将首先在
Aura 云可检测 Epilog EEG 中的癫痫发作,包括一个人可能无意识知道的癫痫发作
癫痫发作(占所有癫痫发作的 50% 以上),例如在睡觉时。 Aura 将运行这些专门为
Epilog 的单通道 EEG 可提供每日数字癫痫发作日记。
在第二阶段,Aura 系统将作为基于脑电图的自动化系统进入 FDA 批准的临床验证试验。
家庭癫痫检测和警报系统。在第二阶段初期,Aura 将作为医疗药物商业化
设备支持的服务商业模式。癫痫患者的自付费用平均为
380 美元/年。有了长期、可重复的脑电图,癫痫学家现在将拥有更精确、定量的数据
记录癫痫发作次数,使他们能够更快、更成功地调整患者治疗,以改善病情
生活质量。 Aura 将使癫痫患者重获新生。 Aura 为您提供确定性
当你需要它的时候。在整个第二阶段,生理、心理、行为和环境因素
将合并在 Aura 应用程序中,收集 300 名患者 27,000 天的多模式数据,以创建
前所未有的已知可引发癫痫发作的特征数据集。
这些数据将在第三阶段使用,以使用人工技术创建一个强大的、可穿戴的癫痫发作预测系统。
结合多模式癫痫发作诱发因素的情报,创建每小时癫痫发作概率。
Aura 将深刻改变癫痫的治疗方式,并改善癫痫患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark J. Lehmkuhle其他文献
Mark J. Lehmkuhle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark J. Lehmkuhle', 18)}}的其他基金
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10200346 - 财政年份:2021
- 资助金额:
$ 99.31万 - 项目类别:
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10710337 - 财政年份:2021
- 资助金额:
$ 99.31万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant














{{item.name}}会员




