Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
基本信息
- 批准号:10402377
- 负责人:
- 金额:$ 99.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsApplications GrantsArtificial IntelligenceAurasAwarenessBackBehavioralBluetoothBusinessesCellular PhoneClinicalCommunity HospitalsConsumptionCuesDataData CollectionData SetDetectionDevelopmentDiagnosisElectroencephalographyEmergency MedicineEnvironmentEnvironmental Risk FactorEpilepsyEventFamilyFinancial HardshipFocal SeizureForeheadFreedomGoalsGoldHomeHospitalsHourLeftLifeLocationMachine LearningManualsMedical DeviceMethodsModelingMonitorMorphologic artifactsMotionNeurologicPaperPatient Self-ReportPatientsPeriodicityPersonsPhasePhysiologicalPrecipitating FactorsPredispositionProbabilityProcessQuality of lifeReproducibilityRunningScalp structureScreening procedureSecureSeizuresServicesSleepSubclinical SeizuresSystemTimeValidationWorkbasecloud platformcostdesigndiariesdigitaldigital healtheffective therapyencryptionimprovedmachine learning algorithmmotor impairmentmultimodal datamultimodalityoptimal treatmentsprogramspsychologicremote monitoringsensorsocialstandard of carewireless
项目摘要
ABSTRACT
Aura is a digital health platform that uses Epilog™, a miniature, wireless, wearable EEG sensor worn on the
scalp below hairline that can record clinical and subclinical seizures. After an initial diagnosis of epilepsy, an
epileptologist will use known information about patients’ seizures to guide the best scalp location to place the
Epilog EEG sensor (A). EEG data is continuously transferred (B) to the Aura app on a person’s smartphone (C)
using secure BluetoothTM where it communicates over WiFi (D) to the Aura cloud platform (E). Epilog EEG is
analyzed for seizures and a daily digital seizure diary is shared with epileptologists (F) and pushed back to the
Aura app (G). Epilog is recharged daily, and reusable for a year. Epilog is designed to be discreet, allowing for
continuous use in all facets of daily life.
Data are a 10 s snippet of the beginning of a focal seizure with motor impairment and intact awareness (ILAE
1A1) recorded from Epitel’s single-channel Epilog sensor placed on the left forehead. The patient was admitted
for video-EEG monitoring as standard-of-care. This seizure was verified independently by three epileptologists.
In Phase I, automated, machine learning-based seizure detection algorithms will be designed to first work in the
Aura cloud to detect seizures in Epilog EEG, including seizures a person may not consciously know they are
having (>50% of all seizures), such as while sleeping. Aura will run these algorithms developed exclusively for
Epilog’s single-channel of EEG to provide a daily digital seizure diary.
In Phase II, the Aura system will enter clinical validation trials for FDA clearance as an EEG-based automated
home seizure detection and alerting system. Early in Phase II Aura will be commercialized as a medical
device-enabled-service business model. Out-of-pocket costs for a person living with epilepsy is an average of
$380/year. Armed with long-term, reproducible EEG, epileptologists will now have a more precise, quantitative
record of seizure counts, enabling them to adapt patient treatment more rapidly and successfully to improve
quality of life. Aura will give people living with epilepsy their lives back. Aura provides certainty where you are
and when you need it. Throughout Phase II, physiological, psychological, behavioral, and environmental factors
will be combined in the Aura app to collect 27,000 days of multi-modal data from 300 patients to create an
unprecedented dataset of features known to precipitate seizures.
These data will be used in Phase III to create a robust, wearable seizure forecasting system using artificial
intelligence that combines multi-modal seizure precipitating factors, creating an hourly seizure probability.
Aura will profoundly disrupt how epilepsy is managed and improve the quality of life of people living with epilepsy.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark J. Lehmkuhle其他文献
Mark J. Lehmkuhle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark J. Lehmkuhle', 18)}}的其他基金
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10200346 - 财政年份:2021
- 资助金额:
$ 99.31万 - 项目类别:
Automated Seizure Detection for Home Seizure Monitoring with Epilog Sensors
使用 Epilog 传感器进行自动癫痫发作检测,用于家庭癫痫发作监测
- 批准号:
10710337 - 财政年份:2021
- 资助金额:
$ 99.31万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 99.31万 - 项目类别:
Continuing Grant














{{item.name}}会员




