Intercellular interactions define cell migrations and transitions that maintain fetal membrane homeostasis
细胞间相互作用定义了维持胎膜稳态的细胞迁移和转变
基本信息
- 批准号:10356919
- 负责人:
- 金额:$ 43.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-12 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AgingAmniotic FluidAreaBasement membraneBiologicalBiological AssayBiological ModelsBiomedical EngineeringBirthCell CommunicationCell Culture TechniquesCell ShapeCell membraneCell modelCell physiologyCellsCharacteristicsDevelopmentDevicesEnvironmentEpithelialEpithelial Cell ProliferationEpithelial CellsExhibitsExperimental ModelsExposure toExtracellular MatrixFailureFetal MembranesFetusFissuralFunctional disorderGenerationsHomeostasisImpairmentIn SituIn VitroInfectionInflammationInflammatoryInterventionInvestigationKineticsKnowledgeLabelLaboratoriesLeadMagnetismMechanicsMembraneMesenchymalMethodologyMethodsMicrofluidicsMicroscopyModelingMolecularMonitorOxidative StressPathologicPathway interactionsPhysiological ProcessesPregnancyPregnancy ComplicationsPremature BirthProcessPropertyProteinsRecyclingResearchRiskRoleSignal TransductionSiteSystemTechnologyTestingTimeTissuesTransitional EpitheliumTranslatingUreaUterine cavityWidthamnionbone fracture repaircell motilitycell typedesignepithelial to mesenchymal transitionfetus cellhealingimprovedin uteroin vitro Modelinnovationmembrane modelmigrationmorphometrymultidisciplinaryorgan on a chipprematurepreterm premature rupture of membranesprototyperepairedresponserisk minimizationsealsecond harmonicsenescence
项目摘要
Fetal membranes (amniochorion) protect the fetus during pregnancy. At term, senescence (aging) and inflammation cause functional and mechanical instability to membrane cells, contributing to parturition. Premature senescence and membrane dysfunctions are associated with preterm birth (PTB) and preterm premature rupture of the membranes (pPROM). However, cellular-level changes contributing to membrane stability during gestation and its dysfunction leading to labor and delivery are still unclear. Recent studies of senescent term and preterm membranes revealed “microfractures” (MFs), sites of cellular remodeling. MFs are resealed during gestation to maintain membrane integrity. Higher numbers of MFs and their increased morphometry (depth and width) in term labor, pPROM, and PTB membranes compared to respective controls suggest MFs' resealing is compromised. Amnion epithelial cells in MFs have been observed undergoing epithelial mesenchymal transition (EMT). Further, these cells showed proliferative and resealing properties of deepithelialized (nude/cell free) areas to stabilize membranes. At the healing edge of MFs, amnion mesenchymal cells exhibited a reverse phenomenon, mesenchymal-epithelial transition (MET). From these findings, we postulate that cellular transitions are essential for maintaining fetal membrane integrity. We
hypothesize that MFs are areas of membrane remodeling and their increased number and morphometry are associated with failure to remodel and dysfunctional membranes. Understanding intercellular and cell-matrix
interactions causing MFs' development and their resealing will help us to determine how oxidative stress (OS)
and inflammation can contribute to the persistence of MFs and dysfunctional membrane status in PTB and pPROM. Two specific aims to be tested are Specific Aim 1: To investigate the dynamic remodeling of the fetal membrane epithelium in an in vitro model of cell-free (nude) membranes during OS and infection / inflammation compared to normal conditions; Specific Aim 2: To determine cell migration, matrix degradation, and cellular transition associated with MFs' formation using a fetal membrane organ-on-a-chip approach. This multidisciplinary proposal combines cell and molecular biological and bioengineering approaches designed to overcome the limitations of classic 2D cell cultures by developing a fetal membrane-on-a-chip using organ-on-chip technologies. This model system will maintain multiple cell types in close proximity with constant dynamic interactions, similar to the conditions in utero. We will elucidate causative molecular mechanisms of (normal and abnormal) biologic MFs' formation and how they contribute to PTB and pPROM. Understanding cellular-level mechanisms will allow us to design strategies to minimize MFs' development to strengthen intrauterine cavities and reduce the risk of PTB and pPROM.
胎膜(绒毛膜)在怀孕期间保护胎儿。在足月时,衰老(老化)和炎症导致膜细胞功能和机械不稳定,有助于分娩。早衰和膜功能障碍与早产(PTB)和早产胎膜早破(pPROM)有关。然而,细胞水平的变化,有助于膜稳定性在妊娠期间,其功能障碍,导致劳动和交付仍然不清楚。最近对衰老足月和早产儿胎膜的研究揭示了“微裂缝”(MF),即细胞重塑的部位。在妊娠期间重新密封MF以保持膜的完整性。与相应对照相比,足月分娩、pPROM和PTB膜中MF数量更高及其形态测定学(深度和宽度)增加表明MF的重新密封受到损害。已观察到MF中的羊膜上皮细胞经历上皮间质转化(EMT)。此外,这些细胞显示出增殖和深上皮化(裸/无细胞)区域的重新密封特性,以稳定膜。在MF愈合边缘,羊膜间充质细胞表现出相反的现象,间充质上皮转化(MET)。从这些发现,我们假设,细胞的转变是必不可少的维持胎膜的完整性。我们
假设MF是膜重塑的区域,并且它们的数量和形态学增加与膜重塑失败和功能障碍有关。理解细胞间和细胞基质
引起微纤维发展和重新密封的相互作用将有助于我们确定氧化应激(OS)
并且炎症可导致MF的持续存在和PTB和pPROM中的膜功能障碍状态。待测试的两个具体目的是具体目的1:研究与正常条件相比,在OS和感染/炎症期间无细胞(裸)膜体外模型中胎膜上皮的动态重塑;具体目的2:使用胎膜器官芯片方法确定与MF形成相关的细胞迁移、基质降解和细胞转化。这个多学科的建议结合了细胞和分子生物学和生物工程的方法,旨在克服传统的二维细胞培养的局限性,通过开发一个胚胎膜芯片上使用器官芯片技术。该模型系统将保持多种细胞类型紧密接近,具有恒定的动态相互作用,类似于子宫内的条件。我们将阐明(正常和异常)生物MFs形成的分子机制,以及它们如何导致PTB和pPROM。了解细胞水平的机制将使我们能够设计策略,以最大限度地减少MF的发展,以加强宫腔和降低PTB和pPROM的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arum Han其他文献
Arum Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arum Han', 18)}}的其他基金
3-D biofabricated feto-maternal interface tissue model to determine drug efficacy during pregnancy to reduce the risk of preterm birth
3D 生物制造胎儿-母体界面组织模型,用于确定妊娠期间的药物疗效,以降低早产风险
- 批准号:
10438407 - 财政年份:2022
- 资助金额:
$ 43.99万 - 项目类别:
3-D biofabricated feto-maternal interface tissue model to determine drug efficacy during pregnancy to reduce the risk of preterm birth
3D 生物制造胎儿-母体界面组织模型,用于确定妊娠期间的药物疗效,以降低早产风险
- 批准号:
10670735 - 财政年份:2022
- 资助金额:
$ 43.99万 - 项目类别:
Developing extracellular vesicle based therapeutics against pre-term birth through the use of maternal-fetal interface on a chip
通过使用芯片上的母胎界面开发基于细胞外囊泡的早产疗法
- 批准号:
10434794 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
Administrative Supplement to Intercellular interactions define cell migrations and transitions that maintain fetal membrane homeostasis
细胞间相互作用的行政补充定义了维持胎膜稳态的细胞迁移和转变
- 批准号:
10177264 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
Accelerating discovery of neutralizing paratopes with Functional Antibody Screening Technology
利用功能性抗体筛选技术加速中和互补位的发现
- 批准号:
10088379 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
Developing extracellular vesicle based therapeutics against pre-term birth through the use of maternal-fetal interface on a chip
通过使用芯片上的母胎界面开发基于细胞外囊泡的早产疗法
- 批准号:
10037855 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
Developing extracellular vesicle based therapeutics against pre-term birth through the use of maternal-fetal interface on a chip
通过使用芯片上的母胎界面开发基于细胞外囊泡的早产疗法
- 批准号:
10492233 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
Intercellular interactions define cell migrations and transitions that maintain fetal membrane homeostasis
细胞间相互作用定义了维持胎膜稳态的细胞迁移和转变
- 批准号:
10571858 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
相似海外基金
Mechanisms of epidermal differentiation by hypoxia response and identification of amniotic fluid-derived factors
缺氧反应引起的表皮分化机制及羊水源性因子的鉴定
- 批准号:
23H02136 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Targeting fetal lung macrophage dysregulation in congenital diaphragmatic hernia with amniotic fluid stem cell extracellular vesicle therapy
羊水干细胞胞外囊泡治疗针对先天性膈疝胎儿肺巨噬细胞失调
- 批准号:
479991 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Operating Grants
Early Treatment With H12-(ADP)-liposomes Ameliorates Post-partum Hemorrhage With Coagulopathy Caused by Amniotic Fluid Embolism in Rabbits.
H12-(ADP)-脂质体的早期治疗可改善兔羊水栓塞引起的产后出血和凝血病。
- 批准号:
23K08828 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel amniotic fluid biomarker to predict the prognosis of fetal growth restriction
建立一种新型羊水生物标志物来预测胎儿生长受限的预后
- 批准号:
23K15809 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of fetal stem cell therapy for cleft lip using sandwich-graft composed of bandage epithelial tissue(BET) and amniotic fluid spheroid
使用绷带上皮组织(BET)和羊水球体组成的三明治移植物开发胎儿干细胞治疗唇裂
- 批准号:
21K21032 - 财政年份:2021
- 资助金额:
$ 43.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of the coagulopathy involving amniotic fluid embolism: Towards development of the specific earlier assessment
涉及羊水栓塞的凝血障碍的调查:制定具体的早期评估
- 批准号:
21K16811 - 财政年份:2021
- 资助金额:
$ 43.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automatic Segmentation of Amniotic Fluid using Deep Learning
使用深度学习自动分割羊水
- 批准号:
565347-2021 - 财政年份:2021
- 资助金额:
$ 43.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Verification of therapeutic effects by amniotic fluid stem cell sheet for rat myelomeningocele model.
羊水干细胞片对大鼠脊髓脊膜膨出模型治疗效果的验证。
- 批准号:
21K16599 - 财政年份:2021
- 资助金额:
$ 43.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Extracellular vesicles derived from amniotic fluid stem cells normalize glomerular function during progressive kidney disease.
来自羊水干细胞的细胞外囊泡在进行性肾脏疾病期间使肾小球功能正常化。
- 批准号:
10348192 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:
Extracellular vesicles derived from amniotic fluid stem cells normalize glomerular function during progressive kidney disease.
来自羊水干细胞的细胞外囊泡在进行性肾脏疾病期间使肾小球功能正常化。
- 批准号:
10549376 - 财政年份:2020
- 资助金额:
$ 43.99万 - 项目类别:














{{item.name}}会员




