Mozak: Creating an Expert Community to accelerate neuronal reconstruction at scale

Mozak:创建专家社区以加速大规模神经元重建

基本信息

  • 批准号:
    10204729
  • 负责人:
  • 金额:
    $ 63.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary This project aims to leverage the best of both computational and human expertise in neuronal reconstruction towards the goal of accelerating global neuroscience discovery from internationally-sourced imaging data. We propose to create a cloud-based unified platform for converging 3-dimensional images of neurons onto a single analysis platform to (1) train and grow a new expert community of global reconstructors to work across the data from these groups, to (2) generate a community-sourced neuronal reconstruction database of open imaging data that can be incorporated into a 3-dimensional map of neuronal interconnectivity - onto which (3) novel annotations and more complex functional and molecular data can be overlaid. Our approach will evolve with the growing needs of the neuroscience community over time. To do this, in Aim One (Neuronal Reconstruction at Scale), we will test if the newly developed crowd-sourced game-based platform Mozak can develop a collective of new human experts at scale, capable of accelerating the rate of current reconstruction by at least an order of magnitude, at the same time as increasing the robustness, quality and unbiasedness of the final reconstructions. In Aim Two (Robust Multi-Purpose Annotation), we will enhance basic neuronal reconstruction by adding specific semantic annotation— including soma volume and morphological quantification, volumetric analysis, and ongoing features (e.g. dendritic spines, axonal varicosities) requested from the neuroscience community. Experienced and high-ranking members will be given the opportunity to advance through increasingly complex neurons into full arbor brain-wide neuronal projections and multiple clustered groups of neurons in localized circuits. Finally, in Aim 3 (Creation of a Research-Adaptive Data Repository), we aim to develop a database of neuronal images reconstructed using the Mozak interface that will directly serve the general and specific needs of different research groups. Our goal is to make this database dynamically adaptive — as new research questions will invariably bring new needs for additional annotations and cross-referencing with other data modalities. This highquality unbiased processing repository will also be perfectly suited for training sets for automated algorithms, and the generation of a 3-dimensional maps such as Allen Institute for Brain Science (AIBS) common coordinate framework. We expect that the computational reconstruction methods will further improve with the new large corpus of “gold standard” reconstructions. Collectively, the completion of these three aims will create an analysis suite as well as an online community of experts capable of performing in depth analysis of large-scale datasets that will significantly accelerate neuroscience research, enhance machine learning for reconstruction analysis, and create a common platform of baseline neuronal morphology data against which aberrantly functioning neurons can be analyzed.
项目概要 该项目旨在利用神经元重建方面最好的计算和人类专业知识 实现加速利用国际来源的成像数据进行全球神经科学发现的目标。我们 建议创建一个基于云的统一平台,将神经元的 3 维图像汇聚到单个 分析平台,以 (1) 培训和发展全球重建者的新专家社区,以跨领域开展工作 来自这些群体的数据,以(2)生成一个来自社区的开放神经元重建数据库 可以纳入神经元互连性 3 维图的成像数据 - 其上 (3) 新颖的注释和更复杂的功能和分子数据可以叠加。我们的方法将会不断发展 随着时间的推移,神经科学界的需求不断增长。为此,在“目标一”(神经元 Reconstruction at Scale),我们将测试新开发的众包游戏平台 Mozak 是否可以 大规模培养一批新的人类专家,能够加快当前重建的速度 至少提高一个数量级,同时提高稳健性、质量和公正性 最后的重建。在目标二(鲁棒多用途注释)中,我们将增强基本神经元 通过添加特定的语义注释来重建——包括体体体积和形态学 要求定量、体积分析和持续特征(例如树突棘、轴突静脉曲张) 来自神经科学界。经验丰富的高级会员将有机会 通过日益复杂的神经元进入完整的全脑神经元投射和多个 局部回路中聚集的神经元群。最后,目标 3(创建研究适应性数据) Repository),我们的目标是开发一个使用 Mozak 接口重建的神经元图像数据库 将直接服务于不同研究小组的一般和特定需求。我们的目标是让这个 数据库动态自适应——因为新的研究问题总是会带来新的额外需求 注释以及与其他数据模式的交叉引用。这个高质量、公正的处理存储库 也将非常适合自动化算法的训练集以及 3 维 诸如艾伦脑科学研究所 (AIBS) 通用坐标框架等地图。我们期望 随着新的“金标准”大型语料库的出现,计算重建方法将进一步改进 重建。总的来说,这三个目标的完成将创建一个分析套件以及一个 能够对大规模数据集进行深入分析的专家在线社区 显着加速神经科学研究,增强用于重建分析的机器学习,以及 创建一个基线神经元形态数据的通用平台,针对功能异常的神经元 可以分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoran Popovic其他文献

Zoran Popovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoran Popovic', 18)}}的其他基金

Mozak: Creating an Expert Community to accelerate neuronal reconstruction at scale
Mozak:创建专家社区以加速大规模神经元重建
  • 批准号:
    10442510
  • 财政年份:
    2018
  • 资助金额:
    $ 63.99万
  • 项目类别:
Mozak: Creating an Expert Community to accelerate neuronal reconstruction at scale
Mozak:创建专家社区以加速大规模神经元重建
  • 批准号:
    10005472
  • 财政年份:
    2018
  • 资助金额:
    $ 63.99万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了