Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics

使用石墨烯生物电子学进行高度集成的核酸分析

基本信息

  • 批准号:
    10372664
  • 负责人:
  • 金额:
    $ 20.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The circulating population of microRNAs in biofluids are ideal biomarkers for various diseases. Point-of-care profiling of circulating microRNAs is in insatiable demand, but typical approaches, e.g., immunoassays and microRNA assays are lab-based/centralized, expensive ($400–1,000/test), and time-consuming (>6 hours). We will develop a highly integrated, all-nanobioelectronic platform technology for multiplex, high-accuracy circulating-microRNA analysis that is capable of profiling circulating microRNAs in a 50-μL plasma with ultra- high sensitivity (sub-fM) and efficiencies in time (<40 minutes) and cost (<$10/test), thereby enabling high- performance circulating-microRNA analysis at the point of test. The novelty of the program is to harness graphene-based bioelectronics to integrate circulating microRNA isolation, concentration, amplification, and quantification into a self-contained device. In order to proof the concept of this technology, the program will include the development and validation of two generations of graphene-based analytical platforms, GAP1 and GAP2. Three specific aims with measurable milestones will be pursued. (1) We will demonstrate that multiple microRNA analytes can be amplified via hybridization chain reaction on a probe-functionalized graphene sensor array and the analyte concentrations can be readily interrogated by the graphene sensor array and translated into electrical signals. We will develop GAP1 to selectively quantify eight pre-selected target microRNAs (MDCIS8) spiked in 5-μL buffer. The detection limit of the specific microRNAs is expected to be at fM level. (2) We will demonstrate that target circulating microRNAs can be isolated from plasma by immobilizing them on a DNA-functionalized graphene electrode and releasing them into a small-volume simple cargo solution upon the generation of pH gradient by applying voltage bias between the graphene-DNA electrode with a bare graphene electrode. We will develop a graphene-based circulating-microRNA isolation module, combine the module with GAP1 to form GAP2, and use GAP2 to profile circulating MDCIS8 in lysed samples of 50-μL plasma from NSG mice. The GAP2 is expected to concentrate the microRNAs by >5× and deliver sub-fM level sensitivity. (3) We will demonstrate the feasibility of using this platform technology for diagnostic applications. We will use GAP2 to quantify circulating MDCIS8, whose expression levels are indicative to pre-invasive breast cancer, in 50-μL plasma samples from a user blinded cohort of the MIND murine model. The profiling result will be analyzed to predict the progression of pre-invasive breast cancer whose rapid, inexpensive diagnosis remains a challenge. The GAP2 prediction outcome will be combined with that based on surgical biopsy to establish the accuracy of the technology for progression prediction. The expected prediction accuracy is >96%. If successful, the technology will offer a new pathway to next-generation point-of-care genomic diagnostic/prognostic micro total analysis systems that would be cheap enough and user friendly enough to be used in various clinical settings.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinglei Ping其他文献

Jinglei Ping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinglei Ping', 18)}}的其他基金

Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
  • 批准号:
    10713388
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
  • 批准号:
    10584520
  • 财政年份:
    2022
  • 资助金额:
    $ 20.86万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 20.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了