Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
基本信息
- 批准号:10713388
- 负责人:
- 金额:$ 37.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvanced DevelopmentBehaviorBicarbonatesBiomedical EngineeringBuffersCarbon DioxideCardiacCardiac MyocytesCardiovascular systemCell modelCell physiologyCellsCellular biologyChemicalsCommunicationDevelopmentDevicesDiffusionDrug Delivery SystemsFailureGoalsMalignant NeoplasmsMetabolismMethodsMicroelectrodesMicroscopicMissionMorphogenesisMorphologyOpticsOutcomePathogenesisPositioning AttributePropertyPublic HealthReaction TimeRegenerative MedicineRegulationResolutionSignal TransductionSystemTechniquesTestingTherapeuticTimeTissue EngineeringTransducersUnited States National Institutes of Healthanti-cancercell behaviordisabilitygrapheneimprovedmeternanomaterialsneoplastic cellpH gradientspatiotemporaltooltwo-dimensional
项目摘要
Microenvironmental pH is a key factor in cell functioning and pathogenesis. To control the function and behavior
of cells by modulating pH microenvironments is critical to advancing the development of cell biology and tissue
engineering and enabling applications in drug delivery and regenerative medicine. However, pH-based cell
control remains a challenge due to the lack of means to real-time, spatioselective modulation of
microenvironmental pH. While pH microenvironments in cell systems are highly heterogeneous in time and
space, known pH-modulation methods are through CO2/HCO3− buffering and H+ diffusion, which are slow,
isotropic, and nonspecific. An urgent need, therefore, is to modulate pH microenvironments in a spatiotemporally
specific manner. Failure to do so means that pH, an essential factor that determines cell fate and function, is not
in good control. The PI’s long-term goal is microenvironmental pH–based closed-loop regulation of cell function,
metabolism, and morphogenesis. The overall goal of this project, a critical step towards the long-term goal, is to
control cells by real-time, spatioselective modulation of pH microenvironments. The hypothesis is that cell
function and behavior can be regulated with ultra-high spatiotemporal resolutions (10–100 µm, <50 s), compared
to conventional, diffusion-based methods (>103 µm, >103 s), in pH microenvironments that are modulated
nanoelectrochemically by microelectrodes based on graphene, a two-dimensional nanomaterial with unique
outstanding bio-transduction properties that address the primary challenge of on-chip pH modulation of living
cell systems for typical microelectrode materials. The approach to test this hypothesis is to quantify real-time
responses of model cell systems to arrayed pH microenvironment generated by an array of bidirectional
graphene-microelectrode transducers that are optically transparent to allow microscopic characterization and
communicate with cellular systems through electrical signal interrogation and rapid nanoelectrochemical
microenvironmental-pH modulation. The following milestone goals will be reached in this project: (1) to create
densely arrayed pH microenvironment by developing an array of bidirectional graphene-microelectrode
transducers and (2) to control the function and behavior of model cell systems (cardiomyocytes and tumor cells)
via spatiotemporal microenvironmental pH modulation using the graphene transducer array. The PI is uniquely
positioned to conduct the project due to the ability of the PI’s lab to create graphene microelectrodes integrable
in a fluidic device for interfacing cellular systems, interrogating electrical/chemical cell signals, and controlling
cell behavior by generating microscale pH gradients. To harness and combine these techniques allows the
development of arrays of bidirectional graphene transducers for selective, real-time pH-microenvironment
modulation and cell control. The expected outcome of the project is pH-based cell-control tools with over two-
orders-of-magnitude enhanced spatiotemporal resolutions compared to conventional methods. This outcome is
to generate positive impact on bioengineering development, regenerative medicine, and synthetic morphology.
微环境pH是细胞功能和发病机制的关键因素。来控制功能和行为
通过调节pH微环境来调节细胞的pH对于促进细胞生物学和组织的发展至关重要
在药物输送和再生医学中的工程和应用。然而,基于pH值的细胞
控制仍然是一个挑战,由于缺乏手段,以实时,空间选择性调制的
虽然细胞系统中的pH微环境在时间上是高度异质的,
在空间上,已知pH调节方法是通过CO2/HCO 3 −缓冲和H+扩散,这是缓慢的,
各向同性和非特异性。因此,迫切需要在时空上调节pH微环境,
具体方式。不这样做意味着pH值,决定细胞命运和功能的重要因素,
控制得很好PI的长期目标是基于微环境pH值的细胞功能闭环调节,
代谢和形态发生。该项目的总体目标是实现长期目标的关键一步,
通过实时、空间选择性调节pH微环境来控制细胞。假设细胞
功能和行为可以通过超高时空分辨率(10-100 µm,<50 s)进行调节,
传统的基于扩散的方法(>103 µm,>103 s),在pH调节的微环境中
通过基于石墨烯的微电极进行纳米电化学,石墨烯是一种具有独特
出色的生物转导特性,解决了芯片上pH调节的主要挑战,
典型微电极材料的电池系统。测试这一假设的方法是量化实时
模型细胞系统对双向阵列产生的阵列pH微环境的响应
石墨烯微电极换能器是光学透明的,以允许微观表征,
通过电信号询问和快速纳米电化学与细胞系统通信
微环境pH调节本项目将达到以下里程碑目标:(1)创建
通过开发双向石墨烯微电极阵列,
换能器和(2)控制模型细胞系统(心肌细胞和肿瘤细胞)的功能和行为
通过使用石墨烯换能器阵列的时空微环境pH调节。PI是独一无二的
由于PI的实验室能够创建可集成的石墨烯微电极,
在用于介接细胞系统、询问电/化学细胞信号和控制的流体装置中,
细胞行为通过产生微尺度pH梯度。为了利用和联合收割机,
用于选择性实时pH微环境的双向石墨烯换能器阵列的开发
调制和细胞控制。该项目的预期成果是基于pH值的细胞控制工具,
数量级增强的时空分辨率相比,传统的方法。这一结果
对生物工程发展、再生医学和合成形态学产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinglei Ping其他文献
Jinglei Ping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinglei Ping', 18)}}的其他基金
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10372664 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
- 批准号:
10584520 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 37.92万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 37.92万 - 项目类别: