Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics

使用石墨烯生物电子学进行高度集成的核酸分析

基本信息

  • 批准号:
    10584520
  • 负责人:
  • 金额:
    $ 18.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The circulating population of microRNAs in biofluids are ideal biomarkers for various diseases. Point-of-care profiling of circulating microRNAs is in insatiable demand, but typical approaches, e.g., immunoassays and microRNA assays are lab-based/centralized, expensive ($400–1,000/test), and time-consuming (>6 hours). We will develop a highly integrated, all-nanobioelectronic platform technology for multiplex, high-accuracy circulating-microRNA analysis that is capable of profiling circulating microRNAs in a 50-μL plasma with ultra- high sensitivity (sub-fM) and efficiencies in time (<40 minutes) and cost (<$10/test), thereby enabling high- performance circulating-microRNA analysis at the point of test. The novelty of the program is to harness graphene-based bioelectronics to integrate circulating microRNA isolation, concentration, amplification, and quantification into a self-contained device. In order to proof the concept of this technology, the program will include the development and validation of two generations of graphene-based analytical platforms, GAP1 and GAP2. Three specific aims with measurable milestones will be pursued. (1) We will demonstrate that multiple microRNA analytes can be amplified via hybridization chain reaction on a probe-functionalized graphene sensor array and the analyte concentrations can be readily interrogated by the graphene sensor array and translated into electrical signals. We will develop GAP1 to selectively quantify eight pre-selected target microRNAs (MDCIS8) spiked in 5-μL buffer. The detection limit of the specific microRNAs is expected to be at fM level. (2) We will demonstrate that target circulating microRNAs can be isolated from plasma by immobilizing them on a DNA-functionalized graphene electrode and releasing them into a small-volume simple cargo solution upon the generation of pH gradient by applying voltage bias between the graphene-DNA electrode with a bare graphene electrode. We will develop a graphene-based circulating-microRNA isolation module, combine the module with GAP1 to form GAP2, and use GAP2 to profile circulating MDCIS8 in lysed samples of 50-μL plasma from NSG mice. The GAP2 is expected to concentrate the microRNAs by >5× and deliver sub-fM level sensitivity. (3) We will demonstrate the feasibility of using this platform technology for diagnostic applications. We will use GAP2 to quantify circulating MDCIS8, whose expression levels are indicative to pre-invasive breast cancer, in 50-μL plasma samples from a user blinded cohort of the MIND murine model. The profiling result will be analyzed to predict the progression of pre-invasive breast cancer whose rapid, inexpensive diagnosis remains a challenge. The GAP2 prediction outcome will be combined with that based on surgical biopsy to establish the accuracy of the technology for progression prediction. The expected prediction accuracy is >96%. If successful, the technology will offer a new pathway to next-generation point-of-care genomic diagnostic/prognostic micro total analysis systems that would be cheap enough and user friendly enough to be used in various clinical settings.
项目概要 生物体液中循环的 microRNA 群体是各种疾病的理想生物标志物。现场护理 对循环 microRNA 的分析有着无法满足的需求,但典型的方法,例如免疫分析和 microRNA 测定是基于实验室/集中化的、昂贵的(每次测试 400-1,000 美元)且耗时(> 6 小时)。我们 将开发高度集成的全纳米生物电子平台技术,用于多重、高精度 循环 microRNA 分析,能够分析 50 µL 血浆中的循环 microRNA 高灵敏度(sub-fM)以及时间效率(<40 分钟)和成本(<10 美元/测试),从而实现高 测试时进行循环 microRNA 分析。该计划的新颖之处在于利用 基于石墨烯的生物电子学,集成循环 microRNA 分离、浓缩、扩增和 量化到一个独立的设备中。为了证明这项技术的概念,该程序将 包括两代基于石墨烯的分析平台 GAP1 和 差距2。将追求三个具有可衡量里程碑的具体目标。 (1) 我们将证明多个 microRNA 分析物可以通过探针功能化石墨烯传感器上的杂交链式反应进行扩增 阵列和分析物浓度可以很容易地通过石墨烯传感器阵列询问并转换 转化为电信号。我们将开发 GAP1 来选择性地量化八个预选的目标 microRNA (MDCIS8) 加标于 5 µL 缓冲液中。特定 microRNA 的检测限预计为 fM 水平。 (2) 我们将证明,通过将目标循环 microRNA 固定在血浆上,可以将其从血浆中分离出来。 DNA 功能化的石墨烯电极,并将其释放到小体积的简单货物溶液中 通过在石墨烯-DNA 电极与裸石墨烯之间施加偏压来产生 pH 梯度 电极。我们将开发一种基于石墨烯的循环microRNA分离模块,将该模块与 GAP1 形成 GAP2,并使用 GAP2 分析来自 NSG 的 50 µL 血浆裂解样品中的循环 MDCIS8 老鼠。 GAP2 预计将 microRNA 浓缩 >5 倍,并提供亚 fM 水平的灵敏度。 (3) 我们 将展示使用该平台技术进行诊断应用的可行性。我们将使用 GAP2 来 定量 50 µL 循环 MDCIS8,其表达水平指示浸润前乳腺癌 血浆样本来自 MIND 小鼠模型的用户盲态队列。分析结果将被分析为 预测浸润前乳腺癌的进展,其快速、廉价的诊断仍然是一个挑战。 GAP2 预测结果将与基于手术活检的结果相结合,以确定 GAP2 预测结果的准确性 进展预测技术。预期预测准确度>96%。如果成功的话, 技术将为下一代护理点基因组诊断/预后微总数提供新途径 分析系统足够便宜且用户友好,可用于各种临床环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinglei Ping其他文献

Jinglei Ping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinglei Ping', 18)}}的其他基金

Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
  • 批准号:
    10713388
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
Highly Integrated Nucleic-Acid Analysis Using Graphene Bioelectronics
使用石墨烯生物电子学进行高度集成的核酸分析
  • 批准号:
    10372664
  • 财政年份:
    2022
  • 资助金额:
    $ 18.99万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了