Deep Learning Reconstruction for Rapid Multi-Component Relaxometry

快速多分量松弛测量的深度学习重建

基本信息

  • 批准号:
    10372860
  • 负责人:
  • 金额:
    $ 22.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Relaxometry is among the most used MRI technique for quantifying tissue properties. Multi-component relaxometry measures the relaxation characteristics of multiple water components, thus delivers both sensitive and specific MR biomarkers for evaluating composition and microstructure of tissues such as cartilage and myelin. However, due to the need to fit a complicated noise-sensitive MR signal model, multi-component relaxation mapping requires repeated scans with a long scan time, limiting its widespread clinical use. The goal of this research proposal is to develop a novel method via leveraging the latest deep learning techniques for realizing accurate and high-quality multi-component relaxation mapping at a rapid, clinical feasible acquisition. While many recent deep learning reconstruction studies have focused on rapid imaging for static MR images with promising results, applications of deep learning for accelerated relaxation mapping have been limited. In this project, we propose to develop, optimize, and evaluate a new deep learning technique that enables accurate characterization and quantification of tissues with multi-component relaxation properties. Building on the foundation of our newly developed deep learning method for rapid imaging, our proposed approach will utilize an efficient end-to-end convolutional neural network to directly convert undersampled MR images into accurate parametric maps for multi-component relaxation. A novel numerical Bloch-simulation based algorithm is applied to precisely model the multi-component relaxation behavior to ensure accuracy, reliability, and robustness in the deep learning training process. Generative adversarial network will be incorporated to further enhance the reconstruction performance to ensure high-quality multi-component relaxation mapping at high acceleration rates. This proposal will also explore new data augmentation approaches by using synthetic image datasets to create a widely generalizable deep learning model. This ensures that the proposed deep learning method can be applied to different relaxation types (e.g., T2, T1 and T1ρ) in many body regions, even if limited training datasets are available. Our proposal includes two specific aims: (i) to develop model-based deep learning method for rapid multi-component relaxometry, and (ii) to investigate the use of synthetic image datasets for training deep learning model. The overall hypothesis is that the proposed reconstruction technique can offer a unique opportunity to explore the acceleration of multi-component relaxometry by leveraging the latest deep learning techniques, resulting in an accurate, efficient, and reliable model that can be widely generalizable. Successful completion of the project will provide a clinically applicable multi-component relaxometry technique for better studying, understanding, and staging diseases such as osteoarthritis and multiple sclerosis. This concept could significantly advance quantitative MRI for clinical translation.
项目摘要 弛豫法是用于量化组织特性的最常用的MRI技术之一。多组分 弛豫测定法测量多个水组分的弛豫特性,从而提供敏感的 和用于评价组织(例如软骨)的组成和微观结构的特异性MR生物标志物, 髓磷脂然而,由于需要拟合复杂的噪声敏感的MR信号模型,因此多分量MR信号模型不适用于复杂的噪声敏感的MR信号模型。 弛豫标测需要长扫描时间的重复扫描,限制了其广泛的临床应用。目标 这项研究提案的目的是通过利用最新的深度学习技术开发一种新方法, 以快速、临床可行的采集实现准确和高质量的多分量弛豫标测。 虽然最近的许多深度学习重建研究都集中在静态MR图像的快速成像上, 尽管取得了可喜的成果,但深度学习在加速松弛映射方面的应用却受到了限制。在 在这个项目中,我们建议开发、优化和评估一种新的深度学习技术, 具有多组分弛豫特性的组织的准确表征和量化。基础上 作为我们新开发的快速成像深度学习方法的基础,我们提出的方法将 利用高效的端到端卷积神经网络将欠采样MR图像直接转换为 多分量松弛的精确参数映射。一种新的基于布洛赫模拟的数值算法 用于精确模拟多组分弛豫行为,以确保准确性、可靠性和 深度学习训练过程中的鲁棒性。生成对抗网络将被纳入,以进一步 增强重建性能,以确保高质量的多分量弛豫映射 加速率。该提案还将探索新的数据增强方法, 图像数据集来创建广泛推广的深度学习模型。这确保了提议的深度 学习方法可以应用于不同的放松类型(例如,T2、T1和T1ρ),甚至 如果有限的训练数据集可用。我们的建议包括两个具体目标:(i)开发基于模型的 用于快速多组分弛豫测定的深度学习方法,以及(ii)研究合成图像的使用 用于训练深度学习模型的数据集。总的假设是,所提出的重建技术 可以提供一个独特的机会,探索加速多组分弛豫,利用 最新的深度学习技术,产生了一个准确,高效和可靠的模型,可以广泛应用于 可概括的该项目的成功完成将提供临床适用的多组件 松弛技术,用于更好地研究,理解和分期疾病,如骨关节炎和 多发性硬化这一概念可以显着推进定量MRI的临床翻译。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang Liu其他文献

Research on the Comprehensive Benefit Evaluation of Electric Vehicle Technology Promotion and Application Under the Strategic Background of “Carbon Peaking and Carbon Neutrality”
  • DOI:
    10.1007/s42835-023-01643-4
  • 发表时间:
    2023-09-14
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Dexiang Jia;Xinda Li;Shaodong Guo;Fang Liu;Chengcheng Fu;Xingde Huang;Zhen Dong;Jing Liu
  • 通讯作者:
    Jing Liu

Fang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang Liu', 18)}}的其他基金

Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
  • 批准号:
    10929242
  • 财政年份:
    2023
  • 资助金额:
    $ 22.72万
  • 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
  • 批准号:
    10662544
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10444468
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
  • 批准号:
    10501420
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10630920
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10598038
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了