Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping

快速三维同步膝关节多重松弛映射

基本信息

  • 批准号:
    10662544
  • 负责人:
  • 金额:
    $ 38.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Osteoarthritis (OA) is one of the most prevalent diseases affecting human joints, characterized by decreased proteoglycan content and disruption of the collagen fiber network in the cartilage extracellular matrix. Magnetic resonance (MR) imaging has been used to quantify cartilage composition and microstructure changes due to degeneration in OA. Among all MR techniques, MR relaxometry is the most popular and can provide non-invasive, high-resolution, three-dimensional imaging biomarkers, which would be highly valuable in quantifying human tissues. Cartilage spin-spin (T2) relaxation time has been found to be sensitive to the changes of collagen ultrastructure associated with early cartilage degeneration. Cartilage spin-lattice relaxation in the rotating frame (T1ρ) is sensitive to the concentration changes of macromolecules and is correlated with proteoglycan loss in OA. The role of spin-lattice relaxation (T1) time has also been reported to correlate with the mechanical property changes of cartilage and is sensitive to progressive damage of the tissue. While each relaxation parameter provides limited and complementary information of cartilage, the capability of imaging T1, T2 and T1ρ together would provide a set of comprehensive imaging biomarkers for synergistically accessing the macromolecular content and their ultrastructure of cartilage. However, due to long scan time, poor image acquisition efficiency, and complex image reconstruction and tissue modeling, simultaneous multi-relaxation mapping is very challenging thus remains underdeveloped in OA research studies. This proposal will provide rapid three- dimensional simultaneous multi-relaxation imaging for mapping T1, T2, and T1ρ of the knee through developing a novel imaging sequence and reconstruction method (Aim 1). This new technique will leverage efficient three- dimensional golden-angle image acquisition and will be accelerated through a novel deep learning method that leverages self-supervised learning and MR physics-informed tissue modeling. The derived MR imaging biomarkers will be correlated with cartilage histological, biochemical, and mechanical properties, which will create a basis for interpretation of the clinical study results (Aim 2). A pilot clinical study using the optimized and accelerated imaging technique will be performed on patients with varying degrees of knee OA, establishing the clinical evidence of the utility, efficiency, and overall clinical value of multi-relaxation mapping on detecting and staging OA (Aim 3). Our proposed new methods will root from developing novel rapid image acquisition, combined with advanced deep learning reconstruction and automatic processing, all of which are pioneered by our team. Successful completion of the proposal will offer a new rapid imaging technique to non-invasively monitor disease-related and treatment-related changes in tissue composition and ultra-structure through multi- relaxation assessment. It will have broad clinical applications for OA and other diseases.
项目摘要 骨关节炎(OA)是影响人类关节的最普遍的疾病之一,其特征在于骨关节炎(OA)引起的骨关节炎(OA)减少。 蛋白多糖含量和软骨细胞外基质中胶原纤维网络的破坏。磁 磁共振(MR)成像已被用于量化软骨组成和微观结构的变化, OA的退化。在所有的MR技术中,MR弛豫测量是最流行的,并且可以提供非侵入性, 高分辨率,三维成像生物标志物,这将是非常有价值的量化人类 组织中已经发现,软骨自旋-自旋(T2)弛豫时间对胶原的变化敏感 超微结构与早期软骨退变有关。旋转坐标系中的Carnival自旋-晶格弛豫 (T1ρ)对大分子的浓度变化敏感,并与蛋白多糖的损失相关, OA。自旋-晶格弛豫(T1)时间的作用也被报道与机械性能相关 软骨的变化,并对组织的进行性损伤敏感。当每个弛豫参数 提供了软骨的有限和互补信息,同时成像T1、T2和T1ρ的能力 将提供一组综合的成像生物标志物,用于协同地访问大分子 软骨组织的含量及其超微结构。然而,由于扫描时间长,图像采集效率差, 和复杂的图像重建和组织建模,同时多松弛映射是非常 因此,在OA研究中仍然缺乏挑战性。这一举措将为快速三... 三维同步多松弛成像,用于通过显影映射膝关节的T1、T2和T1ρ 一种新的成像序列和重建方法(目标1)。这项新技术将利用有效的三- 三维黄金角图像采集,并将通过一种新的深度学习方法来加速, 利用自我监督学习和MR物理信息组织建模。派生的MR成像 生物标志物将与软骨组织学、生物化学和机械特性相关, 为临床研究结果的解释奠定基础(目标2)。使用优化的和 将对不同程度的膝关节OA患者进行加速成像技术, 临床证据表明,多松弛标测在检测和 OA分期(目标3)。我们提出的新方法将源于开发新的快速图像采集, 结合先进的深度学习重建和自动处理,所有这些都是由 我们的团队该提案的成功完成将提供一种新的快速成像技术, 通过多种方法监测组织成分和超微结构的疾病相关和治疗相关变化, 放松评估。它将在OA和其他疾病中具有广泛的临床应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang Liu其他文献

Research on the Comprehensive Benefit Evaluation of Electric Vehicle Technology Promotion and Application Under the Strategic Background of “Carbon Peaking and Carbon Neutrality”
  • DOI:
    10.1007/s42835-023-01643-4
  • 发表时间:
    2023-09-14
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Dexiang Jia;Xinda Li;Shaodong Guo;Fang Liu;Chengcheng Fu;Xingde Huang;Zhen Dong;Jing Liu
  • 通讯作者:
    Jing Liu

Fang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang Liu', 18)}}的其他基金

Ultra-Fast High-Resolution Multi-Parametric MRI for Characterizing Cartilage Extracellular Matrix
用于表征软骨细胞外基质的超快速高分辨率多参数 MRI
  • 批准号:
    10929242
  • 财政年份:
    2023
  • 资助金额:
    $ 38.87万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10444468
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:
Rapid Three-dimensional Simultaneous Knee Multi-Relaxation Mapping
快速三维同步膝关节多重松弛映射
  • 批准号:
    10501420
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10372860
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:
Deep Learning Technology for Rapid Morphological and Quantitative Imaging of Knee Pathology
用于膝关节病理学快速形态学和定量成像的深度学习技术
  • 批准号:
    10630920
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:
Deep Learning Reconstruction for Rapid Multi-Component Relaxometry
快速多分量松弛测量的深度学习重建
  • 批准号:
    10598038
  • 财政年份:
    2022
  • 资助金额:
    $ 38.87万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 38.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了