Structural and Functional Studies of Organellar Ion Channels

细胞器离子通道的结构和功能研究

基本信息

  • 批准号:
    10372154
  • 负责人:
  • 金额:
    $ 32.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Ion transfer across biological membranes is central to nerve excitation, muscle cell contraction, signal transduction, and hormone secretion. Ion channels play a vital role by providing a passageway within membranes to allow specific ions to traverse down their electrochemical gradient. The immense physiological importance of ion channels is reflected in the fact that their dysfunction underlies a variety of disabling human diseases including seizures, deafness, ataxia, long QT syndrome, and cardiac arrhythmias. There is a long history of physiological work and a large body of functional and structural data on tetrameric cation channels that are localized to the plasma membrane, including the K+, Ca2+, Na+, TRP and cyclic nucleotide-gated channels; however, relatively little is known about organellar cation channels, partly because of the difficulty in directly measuring their activities in organellar membranes. Currently, there is an emerging research interest in the recently identified organellar cation channels due to their importance in organelle physiology and cell signaling. This Maximizing Investigators' Research Award proposal will be focused on our ongoing efforts to dissect the structural and functional properties of two specific groups of organellar cation channels: the endolysosomal cation channels and the mitochondrial calcium uniporters. The insights gained from the proposed studies will facilitate our understanding of how these organellar channels regulate some basic biological functions of lysosome and mitochondria. Endosomes and lysosomes play crucial roles in many biological processes such as protein and lipid degradation, catabolite export, membrane trafficking, and metabolism-sensing, and defects to these processes can result in lysosomal storage diseases. These acidic organelles contain various ion channels that control endolysosomal pH and ionic homeostasis. One major research direction in my lab is designed to reveal the structural basis of gating and selectivity in endolysosomal cation channels, including two-pore channels (TPCs), transient receptor potential mucolipin channels (TRPMLs), and the non-canonical TMEM175 K+ channels. Mitochondria can take up large amounts of Ca2+ from cytosol, a process that can modulate ATP production, alter cytoplasmic Ca2+ dynamics, and trigger cell death. Mitochondrial calcium uptake is mediated by the mitochondria calcium uniporter (MCU), a highly selective Ca2+ channel that is localized to the inner mitochondrial membrane. In humans, the uniporter functions as a protein complex consisting of at least four components: the pore-forming MCU, the essential membrane-spanning subunit EMRE, and the Ca2+-sensing gate-keeping proteins MICU1 and MICU2. Another major project in the lab aims to reveal the structural basis of the human MCU complex assembly and the channel regulation. Our experimental approach utilizes single particle cryo-electron microscopy (cryo-EM) and protein crystallography to determine the three-dimensional structures of these channels, and electrophysiology to elucidate their biophysical properties.
摘要 跨生物膜的离子转移对于神经兴奋、肌肉细胞收缩、信号传导和细胞外基质的形成是至关重要的。 转导和激素分泌。离子通道通过在细胞内提供通道, 膜,以允许特定的离子穿越其电化学梯度。巨大的生理 离子通道的重要性反映在它们的功能障碍是各种致残性人类疾病的基础这一事实中。 疾病包括癫痫、耳聋、共济失调、长QT综合征和心律失常。还有很长 四聚体阳离子通道生理学研究历史和大量功能与结构数据 细胞膜上的K+、Ca 2+、Na+、TRP和环核苷酸门控的 通道;然而,对细胞器阳离子通道知之甚少,部分原因是难以在 直接测量它们在细胞器膜中的活性。目前,有一个新兴的研究兴趣, 最近发现细胞器阳离子通道由于其在细胞器生理学和细胞 信号这个最大限度地提高研究人员的研究奖的建议将集中在我们正在进行的努力, 剖析两个特定的细胞器阳离子通道组的结构和功能特性: 内溶酶体阳离子通道和线粒体钙单向转运体。从《经济学人》中获得的见解 拟议的研究将有助于我们了解这些细胞器通道如何调节一些基本的 溶酶体和线粒体的生物学功能。 内体和溶酶体在蛋白质和脂质等生物过程中起着重要的作用 降解、分解代谢物输出、膜运输和代谢传感,以及这些过程的缺陷 会导致溶酶体贮积病这些酸性细胞器含有各种离子通道, 溶酶体内pH和离子稳态。我实验室的一个主要研究方向是揭示 内溶酶体阳离子通道(包括双孔通道)门控和选择性的结构基础 瞬时受体电位粘磷脂通道(TRPML)和非经典TMEM 175 K+通道 渠道线粒体可以从细胞质中摄取大量的Ca 2+,这是一个可以调节ATP的过程。 产生,改变细胞质Ca 2+动力学,并触发细胞死亡。线粒体钙摄取是由 通过线粒体钙单向转运体(MCU),一种高度选择性的Ca 2+通道,定位于内 线粒体膜在人类中,单向转运蛋白作为一种蛋白质复合物起作用,该蛋白质复合物由至少四个 组成部分:成孔MCU,必需的跨膜亚基EMRE和Ca 2+传感 门控蛋白MICU 1和MICU 2。实验室的另一个主要项目旨在揭示 人体MCU复杂的装配和通道调节。我们的实验方法利用单一的 颗粒冷冻电子显微镜(cryo-EM)和蛋白质晶体学,以确定三维 这些通道的结构和电生理学,以阐明其生物物理特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOUXING JIANG其他文献

YOUXING JIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOUXING JIANG', 18)}}的其他基金

Structural and Functional Studies of Organellar Ion Channels
细胞器离子通道的结构和功能研究
  • 批准号:
    10592435
  • 财政年份:
    2021
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    8294276
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    7932746
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    8448603
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    8624699
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    7488770
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    7316422
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
  • 批准号:
    7683886
  • 财政年份:
    2007
  • 资助金额:
    $ 32.8万
  • 项目类别:
Mechanism of Ligand Gating in Potassium Channels
钾通道配体门控机制
  • 批准号:
    6812268
  • 财政年份:
    2004
  • 资助金额:
    $ 32.8万
  • 项目类别:
Mechanism of Ligand Gating in Potassium Channels
钾通道配体门控机制
  • 批准号:
    7119172
  • 财政年份:
    2004
  • 资助金额:
    $ 32.8万
  • 项目类别:

相似海外基金

How exercise improves ataxia in SCA6
运动如何改善 SCA6 的共济失调
  • 批准号:
    479005
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Operating Grants
Role of POU4F1 in a Novel Form of Ataxia
POU4F1 在新型共济失调中的作用
  • 批准号:
    10741382
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
Exploratoin of Nrf2 activators that potentiate chaperone-mediated autophagy and are useful for the treatment of spinocrebellar ataxia
探索增强伴侣介导的自噬并可用于治疗脊髓小脑共济失调的 Nrf2 激活剂
  • 批准号:
    23K06161
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Defining the role of Tox3 in congenital cerebellar hypoplasia and ataxia
定义 Tox3 在先天性小脑发育不全和共济失调中的作用
  • 批准号:
    10799992
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
Genome-wide dysregulation of R-loops in Ataxia Telangiectasia neurological pathogenesis
共济失调毛细血管扩张症神经发病机制中 R 环的全基因组失调
  • 批准号:
    10607414
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
Identifying the molecular mechanisms of GEMIN5 mutations in a novel cerebellar ataxia syndrome
鉴定新型小脑共济失调综合征中 GEMIN5 突变的分子机制
  • 批准号:
    10753403
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
  • 批准号:
    10668768
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
Molecular Pathogenesis of spinocerebellar ataxia type 12
12 型脊髓小脑共济失调的分子发病机制
  • 批准号:
    10579736
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
The Impact of Vitamin D on mTOR Signaling, Seizures, and Motor Behavior in a Mouse Model of Hyperactive mTOR Induced Epilepsy and Ataxia
维生素 D 对 mTOR 过度活跃诱发癫痫和共济失调小鼠模型中 mTOR 信号传导、癫痫发作和运动行为的影响
  • 批准号:
    10754319
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
Pathological Mechanisms of Immune-Mediated Cerebellar Ataxia with Associated Sez6L2 Autoantibodies
免疫介导的小脑共济失调与相关 Sez6L2 自身抗体的病理机制
  • 批准号:
    10740682
  • 财政年份:
    2023
  • 资助金额:
    $ 32.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了