Structural and Functional Studies of Organellar Ion Channels
细胞器离子通道的结构和功能研究
基本信息
- 批准号:10592435
- 负责人:
- 金额:$ 32.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:ArrhythmiaAtaxiaAwardBiologicalBiological ProcessCalciumCationsCell DeathCell membraneComplexCryoelectron MicroscopyCrystallographyCytoplasmCytosolDataDefectElectrophysiology (science)EndosomesFunctional disorderGatekeepingHomeostasisHormone secretionHumanInner mitochondrial membraneIon ChannelIonsLipidsLong QT SyndromeLysosomal Storage DiseasesLysosomesMeasuresMediatingMembraneMetabolismMitochondriaMuscle ContractionNerveOrganellesPhysiologicalPhysiological ProcessesPhysiologyPlayPotassium ChannelProcessProductionPropertyProteinsRecording of previous eventsRegulationResearchResearch PersonnelRoleSeizuresSignal TransductionTRP channelWorkbiophysical propertiescalcium uniportercyclic-nucleotide gated ion channelsdeafnessdesignhuman diseaseinsightinterestparticleprotein complexthree dimensional structuretraffickinguptake
项目摘要
ABSTRACT
Ion transfer across biological membranes is central to nerve excitation, muscle cell contraction, signal
transduction, and hormone secretion. Ion channels play a vital role by providing a passageway within
membranes to allow specific ions to traverse down their electrochemical gradient. The immense physiological
importance of ion channels is reflected in the fact that their dysfunction underlies a variety of disabling human
diseases including seizures, deafness, ataxia, long QT syndrome, and cardiac arrhythmias. There is a long
history of physiological work and a large body of functional and structural data on tetrameric cation channels
that are localized to the plasma membrane, including the K+, Ca2+, Na+, TRP and cyclic nucleotide-gated
channels; however, relatively little is known about organellar cation channels, partly because of the difficulty in
directly measuring their activities in organellar membranes. Currently, there is an emerging research interest in
the recently identified organellar cation channels due to their importance in organelle physiology and cell
signaling. This Maximizing Investigators' Research Award proposal will be focused on our ongoing efforts to
dissect the structural and functional properties of two specific groups of organellar cation channels: the
endolysosomal cation channels and the mitochondrial calcium uniporters. The insights gained from the
proposed studies will facilitate our understanding of how these organellar channels regulate some basic
biological functions of lysosome and mitochondria.
Endosomes and lysosomes play crucial roles in many biological processes such as protein and lipid
degradation, catabolite export, membrane trafficking, and metabolism-sensing, and defects to these processes
can result in lysosomal storage diseases. These acidic organelles contain various ion channels that control
endolysosomal pH and ionic homeostasis. One major research direction in my lab is designed to reveal the
structural basis of gating and selectivity in endolysosomal cation channels, including two-pore channels
(TPCs), transient receptor potential mucolipin channels (TRPMLs), and the non-canonical TMEM175 K+
channels. Mitochondria can take up large amounts of Ca2+ from cytosol, a process that can modulate ATP
production, alter cytoplasmic Ca2+ dynamics, and trigger cell death. Mitochondrial calcium uptake is mediated
by the mitochondria calcium uniporter (MCU), a highly selective Ca2+ channel that is localized to the inner
mitochondrial membrane. In humans, the uniporter functions as a protein complex consisting of at least four
components: the pore-forming MCU, the essential membrane-spanning subunit EMRE, and the Ca2+-sensing
gate-keeping proteins MICU1 and MICU2. Another major project in the lab aims to reveal the structural basis of
the human MCU complex assembly and the channel regulation. Our experimental approach utilizes single
particle cryo-electron microscopy (cryo-EM) and protein crystallography to determine the three-dimensional
structures of these channels, and electrophysiology to elucidate their biophysical properties.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOUXING JIANG其他文献
YOUXING JIANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOUXING JIANG', 18)}}的其他基金
Structural and Functional Studies of Organellar Ion Channels
细胞器离子通道的结构和功能研究
- 批准号:
10372154 - 财政年份:2021
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
8448603 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
8294276 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7932746 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
8624699 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7488770 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7316422 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7683886 - 财政年份:2007
- 资助金额:
$ 32.8万 - 项目类别:
相似海外基金
How exercise improves ataxia in SCA6
运动如何改善 SCA6 的共济失调
- 批准号:
479005 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Operating Grants
Exploratoin of Nrf2 activators that potentiate chaperone-mediated autophagy and are useful for the treatment of spinocrebellar ataxia
探索增强伴侣介导的自噬并可用于治疗脊髓小脑共济失调的 Nrf2 激活剂
- 批准号:
23K06161 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the role of Tox3 in congenital cerebellar hypoplasia and ataxia
定义 Tox3 在先天性小脑发育不全和共济失调中的作用
- 批准号:
10799992 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Genome-wide dysregulation of R-loops in Ataxia Telangiectasia neurological pathogenesis
共济失调毛细血管扩张症神经发病机制中 R 环的全基因组失调
- 批准号:
10607414 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Identifying the molecular mechanisms of GEMIN5 mutations in a novel cerebellar ataxia syndrome
鉴定新型小脑共济失调综合征中 GEMIN5 突变的分子机制
- 批准号:
10753403 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Molecular Pathogenesis of spinocerebellar ataxia type 12
12 型脊髓小脑共济失调的分子发病机制
- 批准号:
10579736 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
The Impact of Vitamin D on mTOR Signaling, Seizures, and Motor Behavior in a Mouse Model of Hyperactive mTOR Induced Epilepsy and Ataxia
维生素 D 对 mTOR 过度活跃诱发癫痫和共济失调小鼠模型中 mTOR 信号传导、癫痫发作和运动行为的影响
- 批准号:
10754319 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别:
Pathological Mechanisms of Immune-Mediated Cerebellar Ataxia with Associated Sez6L2 Autoantibodies
免疫介导的小脑共济失调与相关 Sez6L2 自身抗体的病理机制
- 批准号:
10740682 - 财政年份:2023
- 资助金额:
$ 32.8万 - 项目类别: