Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
基本信息
- 批准号:7683886
- 负责人:
- 金额:$ 27.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAmino AcidsBacillus cereusBindingBinding SitesBiologicalBiological AssayBiological ModelsBiological ProcessCationsCell membraneCell secretionCharacteristicsDiseaseDivalent CationsFamilyFocus GroupsFunctional disorderGoalsHeartHormonesHumanHuman PathologyHuman bodyIon ChannelIonsKnowledgeLaboratoriesLightMembraneMembrane ProteinsMolecularMonovalent CationsMuscle CellsMutagenesisNervePermeabilityPhototransductionPhysiologicalPotassium ChannelPrevalenceProcessPropertyResearchResearch PersonnelResolutionSensorySequence HomologyStructureSystemTissuesVoltage-Gated Potassium Channelbasecyclic-nucleotide gated ion channelsextracellularinsightmutantprogramstoolvoltage
项目摘要
Ion channels are membrane proteins that control the flow of ions such as K+, Na+, Ca*+, and CI" across
the cell membrane. They regulate many biological processes such as the excitation of nerve and muscle
cells, the secretion of hormones, and sensory transduction. In humans, they are found in nearly all tissues
serving a variety of tasks. Because of their prevalence and importance in the human body, ion channel
dysfunction often lies at the heart of a wide range of human pathologies.
Ion selectivity, whereby channels only allow the passage of specific ions through their pores while
excluding all others, is one of the characteristic properties defining an ion channel. Understanding this
process is central to gaining fundamental knowledge about channel-related biological activities and
diseases. Even though tremendous progress has been made over the last five years in understanding K+
selectivity, especially with the structure determination of several K+ channels, there is little structural
information available for any other cation channels
The overall goal of my research is to understand the structural basis of cation channel selectivity.
More specifically, my laboratory will focus on studying the selectivity of two groups of cation channels: non
specific cation channels, using the NaK channel from Bacillus cereus, a bacterial Na+ and K+ conducting
channel that is homologous to the pore of a CNG channel, as a model system; and the prokaryotic voltage-
gated Na+ channels. We will use a combination of crystallographic and electrophysiological tools to
characterize these channels both structurally and functionally. The proposed research has three specific
aims. The first specific aim is the structural and functional study of monovalent cation conduction in the NaK
channel. This study will allow us to elucidate the molecular mechanisms underlying ion permeability in NaK,
and will also provide crucial insights into understanding the structural basis of ion selectivity in the CNG
channel family. Our second specific aim is to study the divalent cation blockage of the NaK channel. This
study will elucidate the underlying mechanism of divalent cation blockage in CNG channels, a process of
crucial physiological significance, especially to visual transduction. Third, we aim to determine the crystal
structure of the ion conduction pore of a prokaryotic voltage-gated Na+ channel. This study will not only
allow us to elucidate the structural basis of ion selectivity in Na* channels, but will also shed light on the ion
selectivity of Ca2+ channels whose selectivity filter shares high sequence homology to that of Na* channels.
离子通道是控制离子如K+、Na+、Ca ++和Cl-跨膜流动的膜蛋白。
细胞膜。它们调节许多生物过程,如神经和肌肉的兴奋
细胞、激素分泌和感觉传导。在人类中,它们几乎存在于所有组织中
服务于各种任务。由于它们在人体中的普遍性和重要性,离子通道
功能障碍通常是多种人类病理学的核心。
离子选择性,通道仅允许特定离子通过其孔,
是定义离子通道的特征性质之一。理解这一
这一过程是获得有关通道相关生物活动的基础知识的核心,
疾病尽管在过去的五年里,对K+的理解取得了巨大的进展,
选择性,特别是几个K+通道的结构测定,几乎没有结构
任何其他阳离子通道的可用信息
我研究的总体目标是了解阳离子通道选择性的结构基础。
更具体地说,我的实验室将重点研究两组阳离子通道的选择性:
特定的阳离子通道,使用来自蜡状芽孢杆菌的NaK通道,细菌Na+和K+传导
通道,其与CNG通道的孔同源,作为模型系统;和原核电压-
门控Na+通道。我们将结合使用晶体学和电生理学工具,
在结构和功能上表征这些通道。该研究提出了三个具体的
目标。第一个具体目标是在NaK中单价阳离子导电的结构和功能研究
频道这项研究将使我们能够阐明NaK中离子渗透性的分子机制,
也将为理解CNG中离子选择性的结构基础提供重要的见解
频道家族我们的第二个具体目标是研究NaK通道的二价阳离子阻断。这
研究将阐明CNG通道中二价阳离子阻断的潜在机制,这是一个
重要的生理意义,特别是视觉传导。第三,我们的目标是确定晶体
原核细胞电压门控Na+通道的离子传导孔的结构。这项研究不仅将
使我们能够阐明Na* 通道中离子选择性的结构基础,但也将阐明离子
Ca 2+通道的选择性过滤器与Na* 通道具有高度的序列同源性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOUXING JIANG其他文献
YOUXING JIANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOUXING JIANG', 18)}}的其他基金
Structural and Functional Studies of Organellar Ion Channels
细胞器离子通道的结构和功能研究
- 批准号:
10372154 - 财政年份:2021
- 资助金额:
$ 27.06万 - 项目类别:
Structural and Functional Studies of Organellar Ion Channels
细胞器离子通道的结构和功能研究
- 批准号:
10592435 - 财政年份:2021
- 资助金额:
$ 27.06万 - 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
8448603 - 财政年份:2007
- 资助金额:
$ 27.06万 - 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
8294276 - 财政年份:2007
- 资助金额:
$ 27.06万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7932746 - 财政年份:2007
- 资助金额:
$ 27.06万 - 项目类别:
Molecular Mechanism of Cation Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
8624699 - 财政年份:2007
- 资助金额:
$ 27.06万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7488770 - 财政年份:2007
- 资助金额:
$ 27.06万 - 项目类别:
Molecular Mechanisms of Caton Channel Selectivity
阳离子通道选择性的分子机制
- 批准号:
7316422 - 财政年份:2007
- 资助金额:
$ 27.06万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 27.06万 - 项目类别: