Imaging spatial and temporal dynamics of retinal ganglion cells
视网膜神经节细胞的时空动态成像
基本信息
- 批准号:10372059
- 负责人:
- 金额:$ 39.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAgingAlzheimer&aposs DiseaseAmacrine CellsAnimalsAtrophicAutopsyAxonBiological MarkersBlindnessBlood capillariesBrainCell CountCell FractionCellsClinicalContrast MediaCross-Sectional StudiesDetectionDiseaseDropoutEarly DiagnosisEarly treatmentElectrophysiology (science)ExhibitsEyeGanglion Cell LayerGlaucomaGoalsHealthHistologicHistologyHumanImageIndividualLaboratoriesLiteratureLocationLongitudinal StudiesMeasurementMeasuresMethodsMicrogliaModalityMonitorMotionMultiple SclerosisNerve FibersNeural RetinaNeurodegenerative DisordersNeuronsOptical Coherence TomographyOptical MethodsOpticsOrganellesParkinson DiseasePathologyPhasePhotoreceptorsPhysiological ProcessesPopulationProcessPropertyResearchResolutionRetinaRetinal Ganglion CellsRiskRoleSignal TransductionSpecificityStructureTechniquesTechnologyTestingThickThree-Dimensional ImagingTimeUncertaintyVariantVisionVisual Fieldsadaptive opticsage relatedbasecell motilitycell typecellular imagingdensityfovea centralisganglion cellimage registrationimprovedin vivoinstrumentationinterestmorphometryneural circuitneuron lossneuronal cell bodynormal agingnoveloptic nerve disorderpreferenceretinal neurontooltransmission processvisual performance
项目摘要
Project Summary/Abstract
Ganglion cells (GCs) and other inner retinal neurons are fundamental to retinal neural circuitry, processing
photoreceptor signals relayed from intermediate neurons for transmission to the brain. Yet, much remains
unknown about their role in vision and their vulnerability to disease leading to blindness. GCs in particular
are lost to neurodegenerative disorders such as glaucoma, Alzheimer’s disease, Parkinson’s disease, and
multiple sclerosis. We also know from histology that a small fraction of these cells die each year as part of the
normal aging process. Unfortunately, techniques to assess population loss and general health of GCs and other
inner retinal neurons in vivo are limited. New optical modalities that are rapid, specific, and non-invasive
promise to greatly enhance our ability to monitor the spatial and temporal dynamics of inner retinal neurons.
This study takes advantage of unique optical instrumentation developed in my laboratory that combines
adaptive optics and optical coherence tomography to achieve cellular-level 3D imaging of the living human
retina. We will use this technique to investigate three specific aims that quantify the spatial properties of inner
retinal neurons and their change in aging and glaucoma. The long term goal of this research is to establish high
resolution, high specificity optical techniques as valid tools for probing structure and physiologic processes of
the retina at the cellular scale. The resulting ability to study cells in vivo will improve early detection of and
treatment monitoring for diseases that impact the retina.
项目总结/摘要
神经节细胞(GCs)和其他内部视网膜神经元是视网膜神经回路、处理和再生的基础。
光感受器信号从中间神经元传递到大脑。然而,
不知道他们在视力中的作用和他们对导致失明的疾病的脆弱性。特别是GC
神经退行性疾病,如青光眼,阿尔茨海默病,帕金森病,
多发性硬化我们还从组织学中知道,每年这些细胞中有一小部分作为细胞凋亡的一部分死亡。
正常的衰老过程。不幸的是,评估种群损失和GC和其他物种的一般健康状况的技术,
体内的内部视网膜神经元是有限的。快速、特异和非侵入性的新型光学模式
有望大大提高我们监测视网膜内层神经元的时空动态的能力。
这项研究利用了我实验室开发的独特的光学仪器,
自适应光学和光学相干断层扫描,以实现活体人体的细胞级3D成像
视网膜。我们将使用这种技术来研究量化内部空间属性的三个具体目标。
视网膜神经元及其在衰老和青光眼中的变化。这项研究的长期目标是建立高
分辨率,高特异性光学技术作为探测结构和生理过程的有效工具,
视网膜在细胞水平上的变化。由此产生的在体内研究细胞的能力将改善早期检测和
对影响视网膜的疾病进行治疗监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald T Miller其他文献
Donald T Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald T Miller', 18)}}的其他基金
Imaging spatial and temporal dynamics of retinal ganglion cells
视网膜神经节细胞的时空动态成像
- 批准号:
10132330 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
Imaging spatial and temporal dynamics of retinal ganglion cells
视网膜神经节细胞的时空动态成像
- 批准号:
9897531 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
Optical Imaging of Photoreceptor Function and Structure
感光器功能和结构的光学成像
- 批准号:
8128489 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
Imaging Structure and Function of the Photoreceptor-RPE-Choriocapillaris Complex
光感受器-RPE-脉络膜毛细血管复合物的成像结构和功能
- 批准号:
9336920 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
Imaging Structure and Function of the Photoreceptor-RPE-Choriocapillaris Complex
光感受器-RPE-脉络膜毛细血管复合物的成像结构和功能
- 批准号:
9535337 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
Optical Imaging of Photoreceptor Function and Structure
感光器功能和结构的光学成像
- 批准号:
7298997 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
Optical Imaging of the Photoreceptor-RPE Complex
光感受器-RPE 复合物的光学成像
- 批准号:
8523882 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
Optical Imaging of Photoreceptor Function and Structure
感光器功能和结构的光学成像
- 批准号:
7486805 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
Imaging Structure and Function of the Photoreceptor-RPE-Choriocapillaris Complex
光感受器-RPE-脉络膜毛细血管复合物的成像结构和功能
- 批准号:
9979890 - 财政年份:2007
- 资助金额:
$ 39.2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Research Grant