Cortical information integration as a model for pain perception and behavior

皮质信息整合作为疼痛感知和行为的模型

基本信息

  • 批准号:
    10205303
  • 负责人:
  • 金额:
    $ 197.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-22 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Sensory processing requires the interaction between external inputs and an internal brain state. Pain is a unique sensory experience that is triggered by external signals, but is also strongly shaped by internal cognitive and emotional variables. At the circuit level, there is not a single primary pain cortex; instead, a distributed network of cortical areas process and regulate pain. For example, the primary somatosensory cortex (S1) is known to process stimulus-evoked information, such as location and timing. The anterior cingulate cortex (ACC), in contrast, gives rise to the aversive experience of pain and displays a high level of neuronal plasticity in the chronic pain state. Meanwhile, the prefrontal cortex (PFC) can strongly modulate pain behaviors. However, the mechanisms whereby these distributed cortical pain circuits integrate information remain largely unknown. Thus, we propose a novel conceptual and computational framework for pain as a converging, temporally specific, interaction among the S1, the ACC, and the PFC. This interaction can be described by a predictive coding framework that combines feedforward inputs with top-down predictions dependent on prior aversive experiences, and modulatory commands, based on neural activities in the S1, ACC and PFC. To test this hypothesis, we will create a new set of tools for pain studies. We will design devices to accurately measure pain responses; engineer closed-loop brain-computer interfaces (BCIs) to selectively perturb cortical circuits during the precise time course of pain; and define novel statistical methods such as mechanistic mean-field models to analyze dynamic cortical information integration, using local field potentials (LFPs) and ensemble spikes. In Aim 1, we will identify the impact of the nociceptive information on central pain circuit dynamics. We will characterize the directed information flow between the S1, ACC, and PFC (more specifically the prelimbic PFC), before and after noxious stimulation. We will create closed-loop BCIs using a real-time pain detection algorithm based on statistical analyses of simultaneous spikes and LFPs in the S1 and ACC to optogenetically modulate the S1, and show that such perturbations disrupt the integration of signals from the ACC and PFC to impact pain behaviors. We will also analyze how chronic pain alters predictive coding schemes and response to acute pain. In Aim 2, we will use BCIs to test the impact of ACC modulation on neural activities in the S1 and PFC, as well as on pain behaviors. More importantly, we will show that chronic pain can induce maladaptive plasticity in the ACC, which in turn alters the information flow from the S1 and PFC to give rise to pain anticipation and tonic pain – two examples of pain experience driven by an internal aversive state. In Aim 3, we will show that BCI-driven modulation of PFC outputs can provide scalable regulation of the nociceptive information flow from the S1 and ACC to alter pain behaviors. Further, we will show how such cortical modulation is impaired by chronic pain.
感觉处理需要外部输入和内部大脑状态之间的相互作用。疼痛是独一无二的 由外部信号触发的感觉体验,但也强烈地受到内部认知和 情绪变数。在电路层面上,不存在单一的初级痛觉皮层;相反,它是一个分布式网络 大脑皮层处理和调节疼痛。例如,已知初级躯体感觉皮质(S1) 处理刺激诱发的信息,如位置和时间。前扣带回皮质(ACC),在 相反,会引起疼痛的厌恶体验,并显示出高水平的神经元可塑性 慢性疼痛状态。同时,前额叶皮质(PFC)对疼痛行为有很强的调节作用。然而, 这些分布式皮质痛觉回路整合信息的机制在很大程度上仍不清楚。 因此,我们提出了一个新的概念和计算框架的疼痛作为一个汇聚,时间 具体地说,S1、ACC和PFC之间的相互作用。这种相互作用可以用预测性的 将前馈输入与依赖于先验厌恶的自上而下预测相结合的编码框架 经验和调制命令,基于S1、ACC和PFC中的神经活动。为了测试这一点 假设,我们将为疼痛研究创造一套新的工具。我们将设计设备来精确测量 疼痛反应;设计闭环式脑机接口(BCI),选择性地扰乱皮质电路 在疼痛的精确时间过程中;并定义新的统计方法,如机械平均场 使用局域场势(LFP)和系综分析动态皮层信息整合的模型 斯派克斯。在目标1中,我们将确定伤害性信息对中枢痛觉回路动力学的影响。我们 将描述S1、ACC和PFC之间的定向信息流(更具体地说是初步的 PFC),伤害性刺激前后。我们将使用实时疼痛检测来创建闭环式BCI 基于统计分析的S1和ACC同步尖峰和LFP对光遗传的影响 调制S1,并显示这样的扰动中断了来自ACC和PFC的信号的整合,以 影响疼痛行为。我们还将分析慢性疼痛如何改变预测性编码方案和响应 到剧烈的疼痛。在目标2中,我们将使用BCI来测试ACC调制对S1和 PFC以及对疼痛行为的影响。更重要的是,我们将展示慢性疼痛会导致适应不良 ACC的可塑性,进而改变了S1和PFC的信息流,从而产生疼痛 预期和紧张性疼痛--由内心厌恶状态驱动的疼痛体验的两个例子。在目标3中,我们 将表明,BCI驱动的PFC输出调制可以提供对伤害性感受器的可扩展调节 来自S1和ACC的信息流改变疼痛行为。更进一步,我们将展示这种大脑皮层 慢性疼痛会损害调制功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhe Sage Chen其他文献

Mediodorsal thalamus regulates task uncertainty to enable cognitive flexibility
内侧背侧丘脑调节任务不确定性以实现认知灵活性
  • DOI:
    10.1038/s41467-025-58011-1
  • 发表时间:
    2025-03-18
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Xiaohan Zhang;Arghya Mukherjee;Michael M. Halassa;Zhe Sage Chen
  • 通讯作者:
    Zhe Sage Chen
Prefrontal transthalamic uncertainty processing drives flexible switching
前额叶经丘脑不确定性处理驱动灵活切换
  • DOI:
    10.1038/s41586-024-08180-8
  • 发表时间:
    2024-11-13
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Norman H. Lam;Arghya Mukherjee;Ralf D. Wimmer;Matthew R. Nassar;Zhe Sage Chen;Michael M. Halassa
  • 通讯作者:
    Michael M. Halassa

Zhe Sage Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhe Sage Chen', 18)}}的其他基金

Predictive Biosignature for Endoscopic Therapy for Chronic Pancreatitis Pain
慢性胰腺炎疼痛内镜治疗的预测生物特征
  • 批准号:
    10794609
  • 财政年份:
    2023
  • 资助金额:
    $ 197.82万
  • 项目类别:
Data and Analytical Core
数据和分析核心
  • 批准号:
    10633812
  • 财政年份:
    2023
  • 资助金额:
    $ 197.82万
  • 项目类别:
CRNS: An Integrative Study of Hippocampal-Neocortical Memory Coding during Sleep
CRNS:睡眠期间海马-新皮质记忆编码的综合研究
  • 批准号:
    10401807
  • 财政年份:
    2018
  • 资助金额:
    $ 197.82万
  • 项目类别:
CRNS: An Integrative Study of Hippocampal-Neocortical Memory Coding during Sleep
CRNS:睡眠期间海马-新皮质记忆编码的综合研究
  • 批准号:
    9920779
  • 财政年份:
    2018
  • 资助金额:
    $ 197.82万
  • 项目类别:
CRCN: Dissecting Neural Circuits for Acute Pain
CRCN:剖析急性疼痛的神经回路
  • 批准号:
    9313960
  • 财政年份:
    2016
  • 资助金额:
    $ 197.82万
  • 项目类别:
CRCN: Dissecting Neural Circuits for Acute Pain
CRCN:剖析急性疼痛的神经回路
  • 批准号:
    9242180
  • 财政年份:
    2016
  • 资助金额:
    $ 197.82万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 197.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了