O-O Bond Activation (and Formation) at Bimetallic Enzyme Active Sites
双金属酶活性位点的 O-O 键激活(和形成)
基本信息
- 批准号:10388098
- 负责人:
- 金额:$ 33.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeActive SitesAldehydesAnabolismAntibioticsBiochemicalBiomimeticsCell ProliferationChlamydia trachomatisComplexDNA biosynthesisDevelopmentDioxygenEnzymesEukaryotic CellEukaryotic Initiation FactorsGoalsHumanHydrogen BondingHydroxylationInfectionIronKineticsLeadLightMalignant NeoplasmsMetabolicMethaneMethane hydroxylaseMethodsMixed Function OxygenasesModelingNatureOxidantsOxidesOxygenasesParasitesProductionPropertyReactionRibonucleotide ReductaseRoleStructureTechniquesTolueneWaterWorkcarboxylatedeoxyhypusine monooxygenaseelectronic structurehuman pathogeninsightnovel therapeuticsoxidationpathogenic bacteriatoluene-4-monooxygenase
项目摘要
The overall goal of this proposal is to understand how dioxygen is activated by nonheme diiron
enzymes in metabolically critical transformations. These enzymes perform a remarkable range of functions,
including the biosynthesis of DNA (ribonucleotide reductase (RNR)), the hydroxylation of organic substrates
(soluble methane monooxygenase (sMMOH), toluene monooxygenase), the hydroxylation of the eukaryotic
initiation factor 5a to regulate eukaryotic cell proliferation (human deoxyhypusine hydroxylase (hDOHH)), the
biosynthesis of antibiotics (CmlA, CmlI), and the production of biodiesel (cyanobacterial aldehyde
deformylating oxygenase (cADO)). Important project goals are to understand the roles of the initial diiron(II,III)-
superoxo species and the subsequently formed diiron(III)-peroxo intermediates in substrate oxidation, how the
latter can be converted to corresponding high-valent iron-oxo species that often serve as the key oxidants for
substrate transformation, and to describe the structural, electronic, and reactivity properties of the high-valent
intermediates. These goals will be accomplished by a combination of biochemical and biomimetic approaches.
Our biochemical effort focuses on the diferric-peroxo intermediates (P) of hDOHH and CmlI we found to
have different core structures from the carboxylate-bridged intermediates of sMMOH and RNR. With as many
as four different P species to compare kinetically and spectroscopically, we aim to shed light on how these
structural differences lead to the reactions their respective enzymes catalyze.
Our biomimetic effort will focus on characterizing the various diiron-O2 intermediates listed above to
gain detailed insight into their electronic structures and their oxidative reactivity. For example, can a
diiron(II,III)-superoxo species hydroxylate toluene like toluene-4-monooxygenase? Is it possible for a diiron(III)-
peroxo species oxidize C–H bonds to model a hydroxylase and also mimic the action of cADO in the oxidative
deformylation of aldehydes? What factors favor one reaction over the other? Most importantly, how are diferric-
peroxo intermediates converted into the high-valent diiron oxidants that carry out the most difficult substrate
oxidations. These latter complexes are also critical to our efforts to clarify the nature of the high-valent diiron
core in the methane-hydroxylating enzyme intermediate sMMOH-Q using new spectroscopic techniques.
Our biomimetic efforts will be extended to the synthesis of Fe–O–Mn and Fe–O–Ce complexes. The
Fe–O–Mn complexes mimic high-valent intermediates of the ribonucleotide reductase from the parasite
Chlamydia trachomatis and the related R2lox enzymes found in pathogenic bacteria. Understanding the
difference in the reactivity properties of high-valent FeFe and FeMn complexes may contribute to the
development of better methods for treating infections from such human pathogens. The Fe–O–Ce complexes
will help us understand the O–O bond formation mechanism of iron-catalyzed water oxidation by CeIV, which
we propose to be just the reverse of the reaction sequence used by the diiron enzymes for dioxygen activation.
该提案的总体目标是了解如何通过非血红素迪隆激活二氧化物
代谢上关键转化的酶。这些酶执行了显着的功能,
包括DNA的生物合成(核糖核苷酸还原(RNR)),有机底物的羟基化
(可溶性甲烷单加氧酶(SMMOH),甲苯单加氧酶),真核生物的羟基化
起始因子5a调节真核细胞增殖(人脱氧蛋白羟化酶(HDOHH)),
抗生素(CMLA,CMLI)的生物合成和生物柴油的产生(蓝细菌醛
变形氧酶(CADO))。重要的项目目标是了解最初的二龙(II,iii)的作用 -
超氧物种和随后形成的diron(III) - 底物氧化中的过敏中间体,如何
后者可以转换为相应的高价值铁氧化物种,这些物种通常用作关键的氧化剂
底物转换,并描述高价值的结构,电子和反应性能
中间人。这些目标将通过生化和仿生方法的结合来实现。
我们发现,我们发现的HDOHH和CMLI的差异 - 过敏中间体(P)的焦点
与SMMOH和RNR的羧酸桥桥梁中间体具有不同的核心结构。和很多
作为四种不同的P物种可以在动力学和光谱上进行比较,我们的目的是阐明这些
结构差异导致其各自的酶催化的反应。
我们的仿生努力将着重于表征上面列出的各种Diiron-O2中间体
详细了解其电子结构及其氧化反应性。例如,可以
Diiron(II,III) - 甲苯甲苯甲苯甲苯甲苯 - 4-单氧化酶?二龙(iii)是否有可能
过氧物种将C – H键氧化以建模羟化酶,并模仿CADO在氧化中的作用
醛的变形?什么因素有利于一种反应?最重要的是,如何差异
过氧中间体转化为执行最困难底物的高价值透射氧化物
氧化物。这些后来的综合体对于我们阐明高价迪隆的性质的努力也至关重要
甲烷羟基化酶的核心使用新的光谱技术中间SMMOH-Q。
我们的仿生努力将扩展到Fe -O -MN和Fe -O -Ce络合物的合成。这
Fe – O-MN复合物模仿核糖核苷酸的高价值中间体从寄生虫还原
在致病细菌中发现的沙眼衣原体和相关的R2lox酶。了解
高价FEFE和FEMN复合物的反应性特性的差异可能有助于
开发更好的方法来治疗这种人类病原体的感染。 Fe – O -ce络合物
将帮助我们了解CEIV的铁催化水氧化的O – O键形成机制,这
我们建议仅是Diron酶用于二氧化激活的反应序列的逆向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAWRENCE QUE其他文献
LAWRENCE QUE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAWRENCE QUE', 18)}}的其他基金
O-O Bond Activation (and Formation) at Bimetallic Enzyme Active Sites
双金属酶活性位点的 O-O 键激活(和形成)
- 批准号:
9908130 - 财政年份:2019
- 资助金额:
$ 33.85万 - 项目类别:
O-O Bond Activation (and Formation) at Bimetallic Enzyme Active Sites
双金属酶活性位点的 O-O 键激活(和形成)
- 批准号:
10610894 - 财政年份:2019
- 资助金额:
$ 33.85万 - 项目类别:
Synthetic Models and Spectroscopy of Nonheme Diiron Enzymes
非血红素二铁酶的合成模型和光谱学
- 批准号:
7811796 - 财政年份:2009
- 资助金额:
$ 33.85万 - 项目类别:
EXAFS STUDIES OF AN AQUEOUS FE(IV) INTERMEDIATE
水相 FE(IV) 中间体的 EXAFS 研究
- 批准号:
7370698 - 财政年份:2006
- 资助金额:
$ 33.85万 - 项目类别:
EXAFS STUDIES OF NON-HEME IRON ENZYME INTERMEDIATES AND MODEL COMPOUNDS
非血红素铁酶中间体和模型化合物的 EXAFS 研究
- 批准号:
7370421 - 财政年份:2006
- 资助金额:
$ 33.85万 - 项目类别:
EXAFS OF NON-HEME IRON ENZYME INTERMEDIATES & MODEL COMP
非血红素铁酶中间体的 EXAFS
- 批准号:
6976311 - 财政年份:2004
- 资助金额:
$ 33.85万 - 项目类别:
CHEMISTRY-BIOLOGY INTERFACE PREDOCTORAL TRAINING GRANT
化学-生物学接口博士前培训补助金
- 批准号:
6150944 - 财政年份:1999
- 资助金额:
$ 33.85万 - 项目类别:
CHEMISTRY-BIOLOGY INTERFACE PREDOCTORAL TRAINING GRANT
化学-生物学接口博士前培训补助金
- 批准号:
6604088 - 财政年份:1999
- 资助金额:
$ 33.85万 - 项目类别:
Synthetic Models and Spectroscopy of Metal-Oxo Proteins
金属氧化蛋白的合成模型和光谱学
- 批准号:
6616418 - 财政年份:1999
- 资助金额:
$ 33.85万 - 项目类别:
相似海外基金
Repurposing Styrene Catabolic Enzymes for the Synthesis of Penicillins
重新利用苯乙烯分解代谢酶来合成青霉素
- 批准号:
10686815 - 财政年份:2022
- 资助金额:
$ 33.85万 - 项目类别:
Repurposing Styrene Catabolic Enzymes for the Synthesis of Penicillins
重新利用苯乙烯分解代谢酶来合成青霉素
- 批准号:
10411114 - 财政年份:2022
- 资助金额:
$ 33.85万 - 项目类别:
Elucidating pro-metastatic collagen modifying activities of lysyl hydroxylase 2
阐明赖氨酰羟化酶 2 的促转移胶原蛋白修饰活性
- 批准号:
10376870 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
SELF-MASKED ALDEHYDES AS INHIBITORS OF THE CYSTEINE PROTEASES 3CL PROTEASE, CATHEPSIN L, AND CRUZAIN
自掩蔽醛作为半胱氨酸蛋白酶 3CL 蛋白酶、组织蛋白酶 L 和 CruzAIN 的抑制剂
- 批准号:
10355007 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Elucidating pro-metastatic collagen modifying activities of lysyl hydroxylase 2
阐明赖氨酰羟化酶 2 的促转移胶原蛋白修饰活性
- 批准号:
10208217 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别: