O-O Bond Activation (and Formation) at Bimetallic Enzyme Active Sites
双金属酶活性位点的 O-O 键激活(和形成)
基本信息
- 批准号:10610894
- 负责人:
- 金额:$ 33.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeActive SitesAldehydesAnabolismAntibioticsBiochemicalBiomimeticsCell ProliferationChlamydia trachomatisComplexDNA biosynthesisDevelopmentDioxygenElectronicsEnzymesEukaryotic CellEukaryotic Initiation FactorsGoalsHumanHydrogen BondingHydroxylationInfectionIronKineticsLeadMalignant NeoplasmsMetabolicMethaneMethane hydroxylaseMethodsMixed Function OxygenasesModelingNatureOxidantsOxygenasesParasitesProductionPropertyReactionRibonucleotide ReductaseRoleStructureTechniquesTolueneWaterWorkcarboxylatecarboxylationdeoxyhypusine monooxygenaseelectronic structurehuman pathogeninsightmetallicitynovel therapeuticsoxidationpathogenic bacteriatoluene-4-monooxygenase
项目摘要
The overall goal of this proposal is to understand how dioxygen is activated by nonheme diiron
enzymes in metabolically critical transformations. These enzymes perform a remarkable range of functions,
including the biosynthesis of DNA (ribonucleotide reductase (RNR)), the hydroxylation of organic substrates
(soluble methane monooxygenase (sMMOH), toluene monooxygenase), the hydroxylation of the eukaryotic
initiation factor 5a to regulate eukaryotic cell proliferation (human deoxyhypusine hydroxylase (hDOHH)), the
biosynthesis of antibiotics (CmlA, CmlI), and the production of biodiesel (cyanobacterial aldehyde
deformylating oxygenase (cADO)). Important project goals are to understand the roles of the initial diiron(II,III)-
superoxo species and the subsequently formed diiron(III)-peroxo intermediates in substrate oxidation, how the
latter can be converted to corresponding high-valent iron-oxo species that often serve as the key oxidants for
substrate transformation, and to describe the structural, electronic, and reactivity properties of the high-valent
intermediates. These goals will be accomplished by a combination of biochemical and biomimetic approaches.
Our biochemical effort focuses on the diferric-peroxo intermediates (P) of hDOHH and CmlI we found to
have different core structures from the carboxylate-bridged intermediates of sMMOH and RNR. With as many
as four different P species to compare kinetically and spectroscopically, we aim to shed light on how these
structural differences lead to the reactions their respective enzymes catalyze.
Our biomimetic effort will focus on characterizing the various diiron-O2 intermediates listed above to
gain detailed insight into their electronic structures and their oxidative reactivity. For example, can a
diiron(II,III)-superoxo species hydroxylate toluene like toluene-4-monooxygenase? Is it possible for a diiron(III)-
peroxo species oxidize C–H bonds to model a hydroxylase and also mimic the action of cADO in the oxidative
deformylation of aldehydes? What factors favor one reaction over the other? Most importantly, how are diferric-
peroxo intermediates converted into the high-valent diiron oxidants that carry out the most difficult substrate
oxidations. These latter complexes are also critical to our efforts to clarify the nature of the high-valent diiron
core in the methane-hydroxylating enzyme intermediate sMMOH-Q using new spectroscopic techniques.
Our biomimetic efforts will be extended to the synthesis of Fe–O–Mn and Fe–O–Ce complexes. The
Fe–O–Mn complexes mimic high-valent intermediates of the ribonucleotide reductase from the parasite
Chlamydia trachomatis and the related R2lox enzymes found in pathogenic bacteria. Understanding the
difference in the reactivity properties of high-valent FeFe and FeMn complexes may contribute to the
development of better methods for treating infections from such human pathogens. The Fe–O–Ce complexes
will help us understand the O–O bond formation mechanism of iron-catalyzed water oxidation by CeIV, which
we propose to be just the reverse of the reaction sequence used by the diiron enzymes for dioxygen activation.
这个提议的总体目标是了解双氧是如何被非血红素双铁激活的
代谢关键转化中的酶。这些酶具有一系列显著的功能,
包括DNA的生物合成(核糖核苷酸还原酶(RNR))、有机底物的羟基化
(可溶性甲烷单加氧酶(sMMOH),甲苯单加氧酶),真核生物的羟基化,
调节真核细胞增殖的起始因子5a(人脱氧羟腐胺赖氨酸羟化酶(hDOHH)),
抗生素(CmlA、CmlI)的生物合成,以及生物柴油(蓝藻醛)的生产
脱甲酰化加氧酶(cADO))。重要的项目目标是了解初始二铁(II,III)的作用-
超氧物种和随后形成的二铁(III)-过氧中间体在底物氧化,如何
后者可以转化为相应的高价铁氧物种,通常作为关键的氧化剂,
底物转化,并描述高价的结构,电子和反应性能
中间体的这些目标将通过生物化学和仿生方法的组合来实现。
我们的生物化学工作集中在hDOHH和CmlI的二铁-过氧中间体(P)上,我们发现,
具有与sMMOH和RNR的羧基桥接中间体不同的核心结构。与尽可能多
作为四种不同的P物种进行动力学和光谱学比较,我们的目标是阐明这些
结构差异导致它们各自的酶催化的反应。
我们的仿生努力将集中在表征上面列出的各种二铁-O2中间体,
详细了解它们的电子结构和氧化反应性。例如,
二铁(II,III)-超氧物种羟基化甲苯像甲苯-4-单加氧酶?二铁(III)有可能-
过氧物质氧化C-H键以模拟羟化酶,并且还模拟cADO在氧化酶中的作用。
醛类化合物的脱醛?哪些因素会使一种反应优于另一种反应?最重要的是,二铁-
过氧中间体转化为高价二铁氧化剂,
氧化这些后一种配合物对于我们澄清高价二铁的性质也是至关重要的
核心的甲烷羟基化酶中间体sMMOH-Q使用新的光谱技术。
我们的仿生努力将扩展到Fe-O-Mn和Fe-O-Ce配合物的合成。的
Fe-O-Mn复合物模拟寄生虫核糖核苷酸还原酶的高价中间体
沙眼衣原体和致病菌中发现的相关R2lox酶了解
高价FeFe和FeMn络合物的反应性性质的差异可能有助于
开发更好的方法来治疗来自这些人类病原体的感染。Fe-O-Ce配合物
将有助于我们理解CeIV铁催化水氧化的O-O键形成机制,
我们建议正好是双铁酶用于双氧活化的反应顺序的相反顺序。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAWRENCE QUE其他文献
LAWRENCE QUE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAWRENCE QUE', 18)}}的其他基金
O-O Bond Activation (and Formation) at Bimetallic Enzyme Active Sites
双金属酶活性位点的 O-O 键激活(和形成)
- 批准号:
9908130 - 财政年份:2019
- 资助金额:
$ 33.85万 - 项目类别:
O-O Bond Activation (and Formation) at Bimetallic Enzyme Active Sites
双金属酶活性位点的 O-O 键激活(和形成)
- 批准号:
10388098 - 财政年份:2019
- 资助金额:
$ 33.85万 - 项目类别:
Synthetic Models and Spectroscopy of Nonheme Diiron Enzymes
非血红素二铁酶的合成模型和光谱学
- 批准号:
7811796 - 财政年份:2009
- 资助金额:
$ 33.85万 - 项目类别:
EXAFS STUDIES OF AN AQUEOUS FE(IV) INTERMEDIATE
水相 FE(IV) 中间体的 EXAFS 研究
- 批准号:
7370698 - 财政年份:2006
- 资助金额:
$ 33.85万 - 项目类别:
EXAFS STUDIES OF NON-HEME IRON ENZYME INTERMEDIATES AND MODEL COMPOUNDS
非血红素铁酶中间体和模型化合物的 EXAFS 研究
- 批准号:
7370421 - 财政年份:2006
- 资助金额:
$ 33.85万 - 项目类别:
EXAFS OF NON-HEME IRON ENZYME INTERMEDIATES & MODEL COMP
非血红素铁酶中间体的 EXAFS
- 批准号:
6976311 - 财政年份:2004
- 资助金额:
$ 33.85万 - 项目类别:
CHEMISTRY-BIOLOGY INTERFACE PREDOCTORAL TRAINING GRANT
化学-生物学接口博士前培训补助金
- 批准号:
6150944 - 财政年份:1999
- 资助金额:
$ 33.85万 - 项目类别:
CHEMISTRY-BIOLOGY INTERFACE PREDOCTORAL TRAINING GRANT
化学-生物学接口博士前培训补助金
- 批准号:
6604088 - 财政年份:1999
- 资助金额:
$ 33.85万 - 项目类别:
Synthetic Models and Spectroscopy of Metal-Oxo Proteins
金属氧化蛋白的合成模型和光谱学
- 批准号:
6616418 - 财政年份:1999
- 资助金额:
$ 33.85万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 33.85万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 33.85万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 33.85万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 33.85万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 33.85万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




