Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
基本信息
- 批准号:10212669
- 负责人:
- 金额:$ 228.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressAffectAlzheimer disease screeningAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAmericanAmyloid beta-ProteinBehaviorBehavior TherapyBehavior monitoringBiological MarkersCause of DeathCellsClinicalClinical TrialsCognitionCognitiveComputersDataData SetDetectionDisease ProgressionEarly InterventionEarly identificationElectronic Health RecordFailureHealth SciencesHeart DiseasesHomeImageIndividualInternetIntervention StudiesInterviewJointsLanguageLanguage DevelopmentLinguisticsLinkMachine LearningMalignant NeoplasmsMeasurementMeasuresMedical HistoryMemory LossModalityModelingMonitorNatural Language ProcessingNeuropsychological TestsOregonOutpatientsParticipantPathologicPatient Self-ReportPatientsPatternPerformanceProtocols documentationRandomizedRiskScientistSignal TransductionStructureTest ResultTimeUnited StatesUniversitiesVideo Recordingaging and technologybasebrain cellcognitive changecohortcost effectivedeep learningdeep reinforcement learningdemographicsdigitaleffective therapyimprovedin vivoinformation frameworklearning algorithmmachine learning algorithmmachine learning methodmild cognitive impairmentmultimodalitynovelpredictive modelingprofiles in patientsscreeningsensorsuccesstau Proteinsuser-friendlywalking speed
项目摘要
Project Summary
Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death
for older people in the United States, just behind heart disease and cancer. While scientists know that
AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the
progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild
cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found
to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest
that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish
subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of
current clinical measures such as annually assessed neuropsychological test results and self-reported
functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can
be used as indicators of pathological progression towards AD, the screening of biomarkers are
prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting.
We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way
people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged
by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our
preliminary results on a small cohort indicated that there are significant differences between MCI and
NC subjects during a semi-structured conversation, and ML algorithms can use such differences for
differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring
also suggest highly predictive performance using temporal patterns of behavior signals. In this project,
we plan to build upon our initial success and conduct comprehensive studies on language and behavior
markers in larger-scale cohorts to build high-performance and interpretable ML models for screening
MCI. Our three Specific Aims are: (1) Discover language markers and develop predictive models
characterizing MCI. Using interview recordings from the I-CONECT project, we will use natural
language processing and ML algorithms to extract linguistic and acoustic markers and develop multi-
modal learning algorithms to fuse the two types of information. (2) Discover behavior markers and
develop predictive models characterizing MCI. Using the in-home monitoring data from ORCATECH,
we will extract short-term and long-term behavior patterns and integrate multi-granularity behavior
markers to differentiate MCI and NC. (3) Linking language and behavior markers with an information
framework. We will use demographics and common clinical information to profile the patients and match
the two cohorts via certain similarity metrics, creating complementary features for improved prediction.
项目摘要
最近的估计表明,阿尔茨海默病(AD)可能是导致死亡的第三大原因
对于美国的老年人来说,仅次于心脏病和癌症。虽然科学家们知道
AD涉及进行性脑细胞衰竭,细胞衰竭的原因尚不清楚。要了解
本病的进展,关键之一是要了解轻症患者的认知改变。
认知障碍(MCI)。即使发现了成像和临床功能等生物标记物
研究表明,在区分AD患者和认知正常(NC)患者方面表现突出
他们在早期MCI中的辨别能力相当有限。检测区分的信号
由于MCI的低敏感性和高变异性,来自NC的MCI的受试者具有挑战性
目前的临床措施,如每年评估神经心理测试结果和自我报告
功能测量。此外,即使体内的生物标记物,如β-淀粉样蛋白和tau可以
作为AD病理进展的指标,筛选生物标记物有
在门诊环境中广泛应用于无症状个体的成本高得令人望而却步。
我们假设,来自MCI的渐进性认知影响已经在方式上引起了可检测的变化
人们的谈话和行为,可以通过廉价和可访问的传感器来感知并利用
通过机器学习(ML)算法来构建预测模型,以量化MCI的风险。我们的
一小群人的初步结果表明,MCI和MCI之间存在显著差异
NC主题在半结构化对话期间,ML算法可以将这种差异用于
以优异的性能区分MCI和NC。我们在行为监测方面的初步结果
还建议使用行为信号的时间模式进行高度预测性的表现。在这个项目中,
我们计划在初步成功的基础上,对语言和行为进行全面的研究
在更大规模的队列中建立用于筛查的高性能和可解释的ML模型的标记
MCI。我们的三个具体目标是:(1)发现语言标记并开发预测模型
MCI的特征。使用I-CONECT项目的采访录音,我们将使用Natural
语言处理和ML算法,以提取语言和声学标记,并开发多个
融合两类信息的模式学习算法。(2)发现行为标记物
开发具有MCI特征的预测模型。使用来自ORCATECH的家庭监控数据,
我们将提取短期和长期行为模式,并整合多粒度行为
用于区分MCI和NC的标记。(3)将语言和行为标记与信息联系起来
框架。我们将使用人口统计学和常见的临床信息来描述患者和匹配
这两组人通过一定的相似性度量,创建了互补的特征,以改进预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKO Hayama DODGE其他文献
HIROKO Hayama DODGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金
Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
- 批准号:
10709094 - 财政年份:2021
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9311584 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9898209 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
- 批准号:
10363310 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9930344 - 财政年份:2017
- 资助金额:
$ 228.64万 - 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
- 批准号:
10058784 - 财政年份:2016
- 资助金额:
$ 228.64万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9348726 - 财政年份:2016
- 资助金额:
$ 228.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 228.64万 - 项目类别:
Research Grant














{{item.name}}会员




