Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers

使用机器学习从语言和行为标记识别轻度认知障碍

基本信息

  • 批准号:
    10212669
  • 负责人:
  • 金额:
    $ 228.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death for older people in the United States, just behind heart disease and cancer. While scientists know that AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of current clinical measures such as annually assessed neuropsychological test results and self-reported functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can be used as indicators of pathological progression towards AD, the screening of biomarkers are prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting. We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our preliminary results on a small cohort indicated that there are significant differences between MCI and NC subjects during a semi-structured conversation, and ML algorithms can use such differences for differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring also suggest highly predictive performance using temporal patterns of behavior signals. In this project, we plan to build upon our initial success and conduct comprehensive studies on language and behavior markers in larger-scale cohorts to build high-performance and interpretable ML models for screening MCI. Our three Specific Aims are: (1) Discover language markers and develop predictive models characterizing MCI. Using interview recordings from the I-CONECT project, we will use natural language processing and ML algorithms to extract linguistic and acoustic markers and develop multi- modal learning algorithms to fuse the two types of information. (2) Discover behavior markers and develop predictive models characterizing MCI. Using the in-home monitoring data from ORCATECH, we will extract short-term and long-term behavior patterns and integrate multi-granularity behavior markers to differentiate MCI and NC. (3) Linking language and behavior markers with an information framework. We will use demographics and common clinical information to profile the patients and match the two cohorts via certain similarity metrics, creating complementary features for improved prediction.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROKO Hayama DODGE其他文献

HIROKO Hayama DODGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金

Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
  • 批准号:
    10709094
  • 财政年份:
    2021
  • 资助金额:
    $ 228.64万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10369036
  • 财政年份:
    2020
  • 资助金额:
    $ 228.64万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10203772
  • 财政年份:
    2020
  • 资助金额:
    $ 228.64万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10641031
  • 财政年份:
    2020
  • 资助金额:
    $ 228.64万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9311584
  • 财政年份:
    2017
  • 资助金额:
    $ 228.64万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9898209
  • 财政年份:
    2017
  • 资助金额:
    $ 228.64万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
  • 批准号:
    10363310
  • 财政年份:
    2017
  • 资助金额:
    $ 228.64万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9930344
  • 财政年份:
    2017
  • 资助金额:
    $ 228.64万
  • 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
  • 批准号:
    10058784
  • 财政年份:
    2016
  • 资助金额:
    $ 228.64万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9348726
  • 财政年份:
    2016
  • 资助金额:
    $ 228.64万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 228.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了