Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
基本信息
- 批准号:10709094
- 负责人:
- 金额:$ 33.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAmericanAmyloid beta-ProteinBehaviorBehavior monitoringBiological MarkersBrain imagingCause of DeathCellsClinicalClinical MarkersClinical TrialsCognitionCognitiveCohort StudiesDataData SourcesDatabasesDementiaDetectionDigital biomarkerDisease ProgressionEarly DiagnosisEarly InterventionEarly identificationEffectivenessElderlyFailureFundingGoalsHeart DiseasesHomeImageIndividualLanguageLanguage DevelopmentLeadLearningMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMeasurementMeasuresMemory LossModalityModelingNeuropsychological TestsOutpatientsPathologicPatient Self-ReportPatientsPatternPerformancePersonsProteomicsReportingResidential FacilitiesRiskSample SizeScientistSignal TransductionStructureTest ResultTrainingUnited StatesWorkbrain cellcognitive changecohortcomputer frameworkcost effectiveeffective therapyimaging biomarkerimprovedin vivoinsightlearning algorithmmachine learning algorithmmachine learning modelmild cognitive impairmentmultimodalitynovelparent projectpredictive modelingresponsescreeningsensorsuccesstau Proteinstransfer learninguser-friendly
项目摘要
Project Summary
Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death
for older people in the United States, just behind heart disease and cancer. While scientists know that
AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the
progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild
cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found
to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest
that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish
subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of
current clinical measures such as annually assessed neuropsychological test results and self-reported
functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can
be used as indicators of pathological progression towards AD, the screening of biomarkers are
prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting.
We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way
people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged
by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our
preliminary results on a small cohort indicated that there are significant differences between MCI and
NC subjects during a semi-structured conversation, and ML algorithms can use such differences for
differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring
also suggest highly predictive performance using temporal patterns of behavior signals. In the parent
project, we are building upon our initial success and conduct comprehensive studies on language and
behavior markers in larger-scale cohorts to build high-performance and interpretable ML models for
screening MCI. This supplement builds on our current work on digital biomarkers and will focus on
further refining the prediction capability of digital biomarkers. Recently, the availability of MRI data from
I-CONECT study has provided Unanticipated Opportunity for us to dramatically improve the quality of
digital biomarkers. To achieve this goal, in Aim S1 we propose to develop a data-driven algorithms
framework that uses high-quality imaging information as auxiliary information to increase the predictive
performance of language markers; in Aim S2 we propose to develop a computational framework to use
public language databases to improve the quality of language markers. This supplement, if funded, will
significant predictive performance improvements of digital biomarkers and therefore improve the
predictive power of early detection of MCI.
项目概要
最近的估计表明,阿尔茨海默病(AD)可能成为第三大死因
对于美国老年人来说,仅次于心脏病和癌症。虽然科学家们知道
AD涉及进行性脑细胞衰竭,但细胞衰竭的原因仍不清楚。要了解
疾病的进展,关键之一是调查轻度患者的认知变化
认知障碍(MCI)。尽管发现了影像学和临床功能等生物标志物
研究表明,在区分 AD 患者与认知正常 (NC) 患者方面表现出色
他们在早期 MCI 中的区分能力相当有限。检测区分的信号
由于敏感性低且变异性高,MCI 受试者与 NC 受试者相比具有挑战性。
当前的临床措施,例如每年评估的神经心理学测试结果和自我报告
功能测量。此外,尽管 β-淀粉样蛋白和 tau 蛋白等体内生物标志物可以
作为AD病理进展的指标,生物标志物的筛选是
在门诊环境中的症状前个体中广泛使用的费用过高。
我们假设 MCI 对认知的渐进影响已经引起了可检测到的变化
人们的说话和行为可以通过廉价且易于使用的传感器来感知并利用
通过机器学习 (ML) 算法构建预测模型来量化 MCI 风险。我们的
一个小队列的初步结果表明,MCI 和 MCI 之间存在显着差异。
半结构化对话期间的 NC 主题,ML 算法可以利用这种差异
凭借良好的性能区分 MCI 和 NC。我们在行为监测方面的初步结果
还建议使用行为信号的时间模式来实现高度预测性能。在父级中
项目中,我们正在初步成功的基础上,对语言和
大规模群体中的行为标记,以构建高性能且可解释的机器学习模型
筛查 MCI。本补充材料建立在我们当前在数字生物标记方面的工作的基础上,并将重点关注
进一步完善数字生物标志物的预测能力。最近,MRI 数据的可用性
I-CONECT 研究为我们大幅提高质量提供了意想不到的机会
数字生物标志物。为了实现这一目标,在 Aim S1 中我们建议开发一种数据驱动的算法
使用高质量成像信息作为辅助信息来增加预测的框架
语言标记的表现;在 Aim S2 中,我们建议开发一个计算框架来使用
公共语言数据库,以提高语言标记的质量。如果获得资助,该补助将
数字生物标志物的预测性能显着提高,从而提高
MCI 早期检测的预测能力。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Corticosteroids for infectious critical illness: A multicenter target trial emulation stratified by predicted organ dysfunction trajectory.
皮质类固醇治疗传染性危重疾病:按预测的器官功能障碍轨迹分层的多中心目标试验模拟。
- DOI:10.1101/2024.03.07.24303926
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Rajendran,Suraj;Xu,Zhenxing;Pan,Weishen;Zang,Chengxi;Siempos,Ilias;Torres,Lisa;Xu,Jie;Bian,Jiang;Schenck,EdwardJ;Wang,Fei
- 通讯作者:Wang,Fei
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Zhuangdi Zhu;Junyuan Hong;Jiayu Zhou
- 通讯作者:Zhuangdi Zhu;Junyuan Hong;Jiayu Zhou
Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork
- DOI:10.48550/arxiv.2210.06428
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Haotao Wang;Junyuan Hong;Aston Zhang;Jiayu Zhou;Zhangyang Wang
- 通讯作者:Haotao Wang;Junyuan Hong;Aston Zhang;Jiayu Zhou;Zhangyang Wang
Generalizability of a Machine Learning Model for Improving Utilization of Parathyroid Hormone-Related Peptide Testing across Multiple Clinical Centers.
机器学习模型的通用性,可提高多个临床中心甲状旁腺激素相关肽测试的利用率。
- DOI:10.1093/clinchem/hvad141
- 发表时间:2023
- 期刊:
- 影响因子:9.3
- 作者:Yang,HeS;Pan,Weishen;Wang,Yingheng;Zaydman,MarkA;Spies,NicholasC;Zhao,Zhen;Guise,TheresaA;Meng,QingH;Wang,Fei
- 通讯作者:Wang,Fei
Building the Model.
- DOI:10.5858/arpa.2021-0635-ra
- 发表时间:2023-07-01
- 期刊:
- 影响因子:4.6
- 作者:Yang HS;Rhoads DD;Sepulveda J;Zang C;Chadburn A;Wang F
- 通讯作者:Wang F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKO Hayama DODGE其他文献
HIROKO Hayama DODGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金
Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
- 批准号:
10212669 - 财政年份:2021
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9311584 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9898209 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
- 批准号:
10363310 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9930344 - 财政年份:2017
- 资助金额:
$ 33.03万 - 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
- 批准号:
10058784 - 财政年份:2016
- 资助金额:
$ 33.03万 - 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
- 批准号:
9348726 - 财政年份:2016
- 资助金额:
$ 33.03万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.03万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 33.03万 - 项目类别:
Studentship