Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers

使用机器学习从语言和行为标记识别轻度认知障碍

基本信息

  • 批准号:
    10709094
  • 负责人:
  • 金额:
    $ 33.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Recent estimates indicate that Alzheimer’s disease (AD) may rank as the third leading cause of death for older people in the United States, just behind heart disease and cancer. While scientists know that AD involves a progressive brain cell failure, the reason why cells fail is still not clear. To understand the progression of the disease, one of the keys is to investigate the cognitive changes in patients with mild cognitive impairment (MCI). Even though biomarkers such as imaging and clinical functions are found to be outstanding in differentiating AD patients from those with normal cognition (NC), studies suggest that their discriminative power in early-stage MCI are rather limited. Detecting signals which distinguish subjects with MCI from those with NC is challenging due to the low sensitivity and high variability of current clinical measures such as annually assessed neuropsychological test results and self-reported functional measurements. Moreover, even though in-vivo biomarkers such as beta-amyloid and tau can be used as indicators of pathological progression towards AD, the screening of biomarkers are prohibitively expensive to be widely used among pre-symptomatic individuals in the outpatient setting. We hypothesize that progressive cognitive impact from MCI has elicited detectable changes in the way people talk and behave, which can be sensed by inexpensive and accessible sensors and leveraged by machine learning (ML) algorithms to build predictive models for quantifying the risk of MCI. Our preliminary results on a small cohort indicated that there are significant differences between MCI and NC subjects during a semi-structured conversation, and ML algorithms can use such differences for differentiating MCI and NC with promising performance. Our preliminary results in behavior monitoring also suggest highly predictive performance using temporal patterns of behavior signals. In the parent project, we are building upon our initial success and conduct comprehensive studies on language and behavior markers in larger-scale cohorts to build high-performance and interpretable ML models for screening MCI. This supplement builds on our current work on digital biomarkers and will focus on further refining the prediction capability of digital biomarkers. Recently, the availability of MRI data from I-CONECT study has provided Unanticipated Opportunity for us to dramatically improve the quality of digital biomarkers. To achieve this goal, in Aim S1 we propose to develop a data-driven algorithms framework that uses high-quality imaging information as auxiliary information to increase the predictive performance of language markers; in Aim S2 we propose to develop a computational framework to use public language databases to improve the quality of language markers. This supplement, if funded, will significant predictive performance improvements of digital biomarkers and therefore improve the predictive power of early detection of MCI.
项目摘要 最近的估计表明,阿尔茨海默病(AD)可能是导致死亡的第三大原因 对于美国的老年人来说,仅次于心脏病和癌症。虽然科学家们知道 AD涉及进行性脑细胞衰竭,细胞衰竭的原因尚不清楚。要了解 本病的进展,关键之一是要了解轻症患者的认知改变。 认知障碍(MCI)。即使发现了成像和临床功能等生物标记物 研究表明,在区分AD患者和认知正常(NC)患者方面表现突出 他们在早期MCI中的辨别能力相当有限。检测区分的信号 由于MCI的低敏感性和高变异性,来自NC的MCI的受试者具有挑战性 目前的临床措施,如每年评估神经心理测试结果和自我报告 功能测量。此外,即使体内的生物标记物,如β-淀粉样蛋白和tau可以 作为AD病理进展的指标,筛选生物标记物有 在门诊环境中广泛应用于无症状个体的成本高得令人望而却步。 我们假设,来自MCI的渐进性认知影响已经在方式上引起了可检测的变化 人们的谈话和行为,可以通过廉价和可访问的传感器来感知并利用 通过机器学习(ML)算法来构建预测模型,以量化MCI的风险。我们的 一小群人的初步结果表明,MCI和MCI之间存在显著差异 NC主题在半结构化对话期间,ML算法可以将这种差异用于 以优异的性能区分MCI和NC。我们在行为监测方面的初步结果 还建议使用行为信号的时间模式进行高度预测性的表现。在父级中 项目,我们正在初步成功的基础上,对语言和语言进行全面研究 更大规模队列中的行为标记,以构建高性能和可解释的ML模型 筛查MCI。本附录建立在我们目前在数字生物标记物方面的工作基础上,并将重点放在 进一步细化数字生物标志物的预测能力。最近,MRI数据的可用性来自 I-CONECT研究为我们提供了意想不到的机会来显著提高 数字生物标志物。为了实现这一目标,在目标S1中,我们建议开发一种数据驱动的算法 使用高质量成像信息作为辅助信息以提高预测性的框架 语言标记的表现;在目标S2中,我们建议开发一个计算框架来使用 公共语言数据库,提高语言标记语的质量。这一副刊,如果得到资助,将 显著提高数字生物标记物的预测性能,从而提高 早期发现MCI的预测力。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Corticosteroids for infectious critical illness: A multicenter target trial emulation stratified by predicted organ dysfunction trajectory.
皮质类固醇治疗传染性危重疾病:按预测的器官功能障碍轨迹分层的多中心目标试验模拟。
  • DOI:
    10.1101/2024.03.07.24303926
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajendran,Suraj;Xu,Zhenxing;Pan,Weishen;Zang,Chengxi;Siempos,Ilias;Torres,Lisa;Xu,Jie;Bian,Jiang;Schenck,EdwardJ;Wang,Fei
  • 通讯作者:
    Wang,Fei
Data-Free Knowledge Distillation for Heterogeneous Federated Learning
Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork
  • DOI:
    10.48550/arxiv.2210.06428
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haotao Wang;Junyuan Hong;Aston Zhang;Jiayu Zhou;Zhangyang Wang
  • 通讯作者:
    Haotao Wang;Junyuan Hong;Aston Zhang;Jiayu Zhou;Zhangyang Wang
Generalizability of a Machine Learning Model for Improving Utilization of Parathyroid Hormone-Related Peptide Testing across Multiple Clinical Centers.
机器学习模型的通用性,可提高多个临床中心甲状旁腺激素相关肽测试的利用率。
  • DOI:
    10.1093/clinchem/hvad141
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Yang,HeS;Pan,Weishen;Wang,Yingheng;Zaydman,MarkA;Spies,NicholasC;Zhao,Zhen;Guise,TheresaA;Meng,QingH;Wang,Fei
  • 通讯作者:
    Wang,Fei
Building the Model.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROKO Hayama DODGE其他文献

HIROKO Hayama DODGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROKO Hayama DODGE', 18)}}的其他基金

Identification of Mild Cognitive Impairment using Machine Learning from Language and Behavior Markers
使用机器学习从语言和行为标记识别轻度认知障碍
  • 批准号:
    10212669
  • 财政年份:
    2021
  • 资助金额:
    $ 33.03万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10369036
  • 财政年份:
    2020
  • 资助金额:
    $ 33.03万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10203772
  • 财政年份:
    2020
  • 资助金额:
    $ 33.03万
  • 项目类别:
Data Management and Statistical Core
数据管理与统计核心
  • 批准号:
    10641031
  • 财政年份:
    2020
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9311584
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9898209
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I Administrative Supplement
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段行政补充
  • 批准号:
    10363310
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9930344
  • 财政年份:
    2017
  • 资助金额:
    $ 33.03万
  • 项目类别:
Conversational Engagement as a Means to Delay Onset AD: Phase II Administrative Supplement
对话参与作为延迟 AD 发作的一种手段:第二阶段行政补充
  • 批准号:
    10058784
  • 财政年份:
    2016
  • 资助金额:
    $ 33.03万
  • 项目类别:
Web-enabled social interaction to delay cognitive decline among seniors with MCI: Phase I
基于网络的社交互动可延缓 MCI 老年人认知能力下降:第一阶段
  • 批准号:
    9348726
  • 财政年份:
    2016
  • 资助金额:
    $ 33.03万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 33.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了