Mechanisms of Node of Ranvier Assembly
Ranvier组装节点的机制
基本信息
- 批准号:10212457
- 负责人:
- 金额:$ 46.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-04-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ANK3 geneActinsAction PotentialsAgreementAxonBindingBiologyCaliberCell Adhesion MoleculesClathrinCoculture TechniquesComplexCytoskeletonDiffuseDiseaseDynamin IEndocytosisEngineeringExtranodalFiberFutureGenerationsHippocampus (Brain)In VitroKnock-outLeadLengthMacromolecular ComplexesMaintenanceMediatingModelingMorphologyMusMyosin Heavy ChainsMyosin Light ChainsMyosin Regulatory Light ChainsMyosin Type IINatural regenerationNervous System PhysiologyNeuraxisNeurogliaNeuronsNodalPathogenesisPeripheralPotassiumProteinsProteomeRanvier&aposs NodesRecovery of FunctionReportingResearchRoleSignal TransductionSiteSodiumSurfaceTestingTransgenic MicebasebetaIV spectrinconditional knockoutin vivoinsightknock-downloss of functionmutantmyelinationnervous system disordernodal proteinnon-muscle myosinnovelnovel therapeutic interventionrecruitrepairedscaffoldtherapy developmentvoltage
项目摘要
The axon initial segment (AIS) and nodes of Ranvier are sites of action potential generation and regeneration,
respectively and are thus critical for the proper function of the nervous system. Their key roles in electrogenesis
results from the striking enrichment of a macromolecular complex of voltage-gated sodium (NaV) and potassium
(KCNQ) channels, cell adhesion molecules (NF186, NrCAM), and a cytoskeletal scaffold of ankyrin G (AnkG)
and beta-IV (βIV) spectrin. Prior to myelination, nodal components are diffusely distributed along axons
consistent with their continuous conduction of action potentials. With myelination, the axon reorganizes into
discrete domains, culminating in node assembly, thus enabling saltatory conduction. A key question is what
drives this reorganization? We have found two complementary mechanisms broadly contribute: i) recruitment
signals that target and stabilize this complex at nodes and ii) active clearance that removes nodal proteins from
everywhere else along the axon. Here, we examine the contribution of both mechanisms to node formation.
Recruitment signals at PNS and CNS nodes culminate in assembly of an AnkG/βIV spectrin cytoskeleton scaffold
to which all other nodal components bind. This scaffold is further tethered to and likely stabilized by regularly
spaced, sub-membranous actin rings at both the AIS and nodes. We recently reported actin rings at the AIS and
nodes are specifically modified by contractile myosin II. In particular, phosphorylated myosin light chain (pMLC)
- the regulatory subunit that activates the contractile function of myosin II - is enriched at and an early marker of
the AIS and nodes. Strategies that increase or decrease pMLC levels/myosin II activity, drive AIS assembly and
disassembly, respectively. These results implicate contractile NMII as a novel regulator of the AIS and suggest
a conserved role at nodes, a notion strongly supported by MLC knockdown studies. We have also found that
just prior to myelination, glial cells drive clearance of nodal components from the internode by clathrin-mediated
endocytosis (CME). Our results suggest cleared proteins are not linked to the cytoskeleton and can therefore be
clustered for endocytosis. In agreement expression of a mutant NF186 construct engineered to bind to the
internodal cytoskeleton, is not endocytosed but rather is persistently expressed along the axon. Strikingly, this
construct delays myelination. This latter finding suggests clearance has dual roles in sculpting the node and
preparing the axon for myelination thereby coordinating assembly of the node of Ranvier with myelination of
axons. Here, we test key aspects of this model, including the role of MLC/myosin II in node assembly/stability
and actin ring integrity by knockdown and knockout strategies. We will also examine the mechanisms and
consequences of this glia-driven clearance of axonal proteins, including modeling defective CME in mice to
broadly perturb the axon surface proteome and assess its effects on myelination. These studies will provide
important new insights into axo-glial interactions that regulate node formation and myelination and, potentially,
into pathogenetic mechanisms that contribute to disorders of myelinated fibers.
轴突起始段(AIS)和Ranvier结是动作电位产生和再生的部位,
因此对神经系统的正常功能至关重要。它们在电发生中的关键作用
这是由于电压门控钠(NaV)和钾的大分子复合物的显著富集
(KCNQ)通道、细胞粘附分子(NF 186、NrCAM)和锚蛋白G(AnkG)的细胞骨架支架
和β-IV(βIV)血影蛋白。在髓鞘形成之前,结节成分沿着轴突弥散分布
与它们动作电位的连续传导相一致。随着髓鞘的形成,轴突重组成
离散域,最终在节点组装,从而使跳跃式传导。一个关键问题是什么
推动这一重组?我们发现两种互补机制广泛地起作用:
i)在节点处靶向并稳定该复合物的信号,和ii)从细胞中去除节点蛋白的主动清除,
沿着轴突的其他地方。在这里,我们研究这两种机制的节点形成的贡献。
PNS和CNS节点的募集信号最终导致AnkG/βIV血影蛋白细胞骨架支架的组装
所有其他节点组件都绑定到它。该支架被进一步拴系到并可能通过定期固定而稳定。
间隔,亚膜肌动蛋白环在AIS和节点。我们最近报道了AIS的肌动蛋白环,
淋巴结被收缩性肌球蛋白II特异性修饰。特别地,磷酸化肌球蛋白轻链(pMLC)
- 激活肌球蛋白II收缩功能的调节亚单位--富含于
AIS和节点。增加或减少pMLC水平/肌球蛋白II活性、驱动AIS组装和
拆卸,分别。这些结果暗示收缩性NMII是AIS的一种新的调节剂,并提示
一个保守的作用,在节点上,一个概念强烈支持MLC敲除研究。我们还发现
就在髓鞘形成之前,神经胶质细胞通过网格蛋白介导的细胞因子,
胞吞作用(CME)。我们的研究结果表明,清除的蛋白质不与细胞骨架连接,因此可以
聚集用于内吞作用。与经工程化以结合至NF 186的突变体NF 186构建体的表达一致,
结间细胞骨架,不被内吞,而是沿轴突沿着持续表达。引人注目的是,这
构建延迟髓鞘形成。后一项发现表明,间隙在塑造节点方面具有双重作用,
准备轴突用于髓鞘形成,从而协调朗维尔结的组装和
轴突在这里,我们测试了这个模型的关键方面,包括MLC/肌球蛋白II在节点组装/稳定性中的作用。
和肌动蛋白环的完整性。我们亦会研究有关机制,
这种神经胶质驱动的轴突蛋白清除的后果,包括在小鼠中建立有缺陷的CME模型,
广泛干扰轴突表面蛋白质组,并评估其对髓鞘形成的影响。这些研究将提供
重要的新见解轴神经胶质细胞的相互作用,调节节点的形成和髓鞘,潜在的,
导致有髓神经纤维紊乱的发病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES SALZER其他文献
JAMES SALZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES SALZER', 18)}}的其他基金
Impact of Schwann Cell Pathology on Axon Structure and Function
雪旺细胞病理学对轴突结构和功能的影响
- 批准号:
10568051 - 财政年份:2022
- 资助金额:
$ 46.98万 - 项目类别:
Role and Regulation of Neural Stem Cells in Remyelination
神经干细胞在髓鞘再生中的作用和调节
- 批准号:
10412936 - 财政年份:2018
- 资助金额:
$ 46.98万 - 项目类别:
Role and Regulation of Neural Stem Cells in Remyelination
神经干细胞在髓鞘再生中的作用和调节
- 批准号:
10155591 - 财政年份:2018
- 资助金额:
$ 46.98万 - 项目类别:
Regulation of Schwann cell enshealthment and myelination by type III Neuregulin 1
III 型神经调节蛋白 1 对雪旺细胞健康和髓鞘形成的调节
- 批准号:
8675621 - 财政年份:2013
- 资助金额:
$ 46.98万 - 项目类别:
2012 Myelin Gordon Research Conference & Gordon Research Seminar
2012年髓磷脂戈登研究会议
- 批准号:
8317793 - 财政年份:2012
- 资助金额:
$ 46.98万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 46.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 46.98万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 46.98万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 46.98万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 46.98万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 46.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 46.98万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 46.98万 - 项目类别:














{{item.name}}会员




