Radiation-induced senescence in the brain microenvironment: Implications for glioblastoma recurrence and therapy
辐射诱导的大脑微环境衰老:对胶质母细胞瘤复发和治疗的影响
基本信息
- 批准号:10211559
- 负责人:
- 金额:$ 36.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-16 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Adjuvant ChemotherapyAstrocytesBrainBrain GlioblastomaBrain NeoplasmsCell AgingCellsDNA RepairDNA Sequence AlterationDevelopmentGlioblastomaGliomaGrowthGrowth FactorHumanIonizing radiationLeadLigandsMalignant neoplasm of brainModalityModelingMutationPatientsPharmaceutical PreparationsPhenotypePublishingRadiationRadiation exposureRadiation therapyRadiosensitizationRecurrenceRecurrent tumorRefractoryResearchResistanceSpecimenTestingTherapeuticTherapeutic InterventionTransgenic Micebrain cellcancer stem cellefficacy testinggenetic signatureimprovedimproved outcomemouse modelneoplastic cellnovelnovel strategiespatient derived xenograft modelpre-clinicalradiation resistanceradioresistantresistance mechanismsenescencetemozolomidetherapeutically effectivetherapy resistanttranscription factortranscriptional reprogrammingtranslational approachtumortumorigenic
项目摘要
Abstract
Glioblastomas (GBM) are aggressive and radioresistant brain cancers for which better therapeutic approaches
are desperately needed. GBM patients are treated with 50-60 Gy of ionizing radiation (IR), and concurrent and
adjuvant chemotherapy with temozolomide (TMZ). Radiation still remains the most effective therapeutic
modality for GBM, yet these tumors inevitably recur, and the recurrent tumors are highly resistant to standard
therapy. Any improvement in therapy would require a better understanding of the basis of GBM recurrence and
therapy resistance of the recurrent tumor. Published research from our lab with transgenic mouse models has
established that IR is potently gliomagenic, and that gliomas arising after radiation exposure are marked by
genomic alterations such as MET amplification which promote a cancer stem cell phenotype and
radioresistance. This raises the possibility that genetic alterations in GBM cells wrought by radiation therapy
could render the recurrent tumor refractory to further therapeutic intervention. Exciting new results from our lab
show that radiation also promotes the development of a senescence-associated secretory phenotype (SASP)
in the brain microenvironment which promotes tumor development via secretion of growth factors like HGF
(ligand for MET). This suggests that radiation-induced senescence of normal brain cells in the vicinity of the
tumor could alter the microenvironment to promote tumor recurrence and radioresistance. Translationally
significant results from our lab show that novel “senolytic” drugs can selectively eliminate senescent astrocytes
in the brain and mitigate the pro-tumorigenic effects of SASP. We hypothesize that radiotherapy-induced
genetic alterations in GBM cells (e.g., MET amplification) cooperate with senescence-associated
changes in the brain microenvironment (e.g., HGF secretion) to promote tumor recurrence and
radioresistance. We propose to analyze if “senolytics” can selectively kill senescent brain cells arising
due to radiotherapy, thereby radiosensitizing GBM and delaying tumor recurrence. There is an urgent
need for experimental strategies to understand such “acquired” therapy-resistance mechanisms in GBM and
develop translational approaches. We have developed novel patient-derived xenograft (PDX) and syngeneic
models of GBM recurrence for this purpose. Using these models, and human GBM specimens, we will
investigate (1) how MET amplification caused by radiotherapy might, via reprogramming transcription factors
like SOX2 and OLIG2, generate cancer stem cells with augmented DNA repair capabilities, (2) how secretion
of tumor promoting factors, like the MET ligand HGF, by senescent astrocytes might promote growth and
radioresistance of GBM cells with MET amplification, and (3) how cooperation between the GBM and its
senescent microenvironment can be negated with “senolytic” drugs in order to improve the outcome of GBM
therapy. This project can lead to the development of effective strategies to treat GBM that take into
consideration both changes to the GBM cell and the brain microenvironment during radiotherapy.
抽象的
胶质母细胞瘤 (GBM) 是一种侵袭性且抗辐射的脑癌,有更好的治疗方法
是迫切需要的。 GBM 患者接受 50-60 Gy 的电离辐射 (IR) 治疗,同时进行
替莫唑胺(TMZ)辅助化疗。放射仍然是最有效的治疗方法
GBM 的治疗方式,但这些肿瘤不可避免地会复发,并且复发的肿瘤对标准具有高度耐药性
治疗。治疗的任何改进都需要更好地了解 GBM 复发的基础和
复发肿瘤的治疗耐药性。我们实验室发表的转基因小鼠模型研究
确定 IR 具有潜在的神经胶质瘤发生作用,并且辐射暴露后出现的神经胶质瘤的特征是
基因组改变,例如促进癌症干细胞表型的 MET 扩增,
辐射抗性。这提出了放疗引起 GBM 细胞基因改变的可能性
可能会使复发性肿瘤难以进一步治疗干预。我们实验室的令人兴奋的新结果
表明辐射还促进衰老相关分泌表型(SASP)的发展
大脑微环境中通过分泌 HGF 等生长因子促进肿瘤发展
(MET 的配体)。这表明辐射诱导了大脑周围正常脑细胞的衰老。
肿瘤可能改变微环境,促进肿瘤复发和放射抵抗。平移地
我们实验室的重要结果表明,新型“senolytic”药物可以选择性地消除衰老的星形胶质细胞
并减轻 SASP 的促肿瘤作用。我们假设放射治疗引起的
GBM 细胞的遗传改变(例如 MET 扩增)与衰老相关
脑微环境的变化(例如 HGF 分泌)促进肿瘤复发和
辐射抗性。我们建议分析“senolytics”是否可以选择性杀死出现的衰老脑细胞
由于放射治疗,从而使 GBM 放射增敏并延迟肿瘤复发。有紧急情况
需要实验策略来了解 GBM 中的这种“获得性”治疗抵抗机制
开发转化方法。我们开发了新型患者来源的异种移植物(PDX)和同基因移植物
为此目的建立 GBM 复发模型。使用这些模型和人类 GBM 标本,我们将
研究 (1) 放疗引起的 MET 扩增如何通过重编程转录因子来进行
像 SOX2 和 OLIG2 一样,产生具有增强 DNA 修复能力的癌症干细胞,(2) 如何分泌
衰老星形胶质细胞产生的肿瘤促进因子(如 MET 配体 HGF)可能会促进生长和
MET 扩增的 GBM 细胞的放射抗性,以及(3)GBM 及其之间如何合作
可以用“衰老”药物消除衰老微环境,以改善 GBM 的治疗结果
治疗。该项目可以制定有效的策略来治疗 GBM,其中考虑到
考虑放疗期间 GBM 细胞和大脑微环境的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandeep Burma其他文献
Sandeep Burma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandeep Burma', 18)}}的其他基金
Enhancing MAPK-targeted Therapy in PDX Models of BRAF-Mutant Pediatric Brain Tumors
增强 BRAF 突变儿童脑肿瘤 PDX 模型中的 MAPK 靶向治疗
- 批准号:
10175336 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Enhancing MAPK-targeted Therapy in PDX Models of BRAF-Mutant Pediatric Brain Tumors
增强 BRAF 突变儿童脑肿瘤 PDX 模型中的 MAPK 靶向治疗
- 批准号:
10368111 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Radiation-induced senescence in the brain microenvironment: Implications for glioblastoma recurrence and therapy
辐射诱导的大脑微环境衰老:对胶质母细胞瘤复发和治疗的影响
- 批准号:
10394384 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Enhancing MAPK-targeted Therapy in PDX Models of BRAF-Mutant Pediatric Brain Tumors
增强 BRAF 突变儿童脑肿瘤 PDX 模型中的 MAPK 靶向治疗
- 批准号:
10553688 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Radiation-induced senescence in the brain microenvironment: Implications for glioblastoma recurrence and therapy
辐射诱导的大脑微环境衰老:对胶质母细胞瘤复发和治疗的影响
- 批准号:
10578763 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Mechanisms of EXO1 regulation in response to radiation-induced DNA damage
EXO1 响应辐射引起的 DNA 损伤的调节机制
- 批准号:
9926813 - 财政年份:2019
- 资助金额:
$ 36.81万 - 项目类别:
Mechanisms of EXO1 regulation in response to radiation-induced DNA damage
EXO1 响应辐射引起的 DNA 损伤的调节机制
- 批准号:
10063785 - 财政年份:2019
- 资助金额:
$ 36.81万 - 项目类别:
Augmented homologous recombination as a mechanism of acquired temozolomide resistance in glioblastoma
增强同源重组作为胶质母细胞瘤获得性替莫唑胺耐药的机制
- 批准号:
9325481 - 财政年份:2016
- 资助金额:
$ 36.81万 - 项目类别:
Molecular mechanisms of GBM radioresistance and strategies for radiosensitization
GBM放射抵抗的分子机制及放射增敏策略
- 批准号:
8605809 - 财政年份:2011
- 资助金额:
$ 36.81万 - 项目类别:
Molecular mechanisms of GBM radioresistance and strategies for radiosensitization
GBM放射抵抗的分子机制及放射增敏策略
- 批准号:
8042256 - 财政年份:2011
- 资助金额:
$ 36.81万 - 项目类别:
相似国自然基金
Ascl1介导Wnt/beta-catenin通路在TLE海马硬化中反应性Astrocytes异常增生的作用及调控机制
- 批准号:31760279
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Function of astrocytes autophagy in brain homeostasis and opioid-induced maladaptive behavior and addiction, in the context of HIV
HIV背景下星形胶质细胞自噬在大脑稳态和阿片类药物诱导的适应不良行为和成瘾中的功能
- 批准号:
10619748 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Regional characterization of astrocytes in the human brain
人脑星形胶质细胞的区域特征
- 批准号:
RGPIN-2018-05203 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
Effects of chemogenetic inhibition of astrocytes on pattern separation and brain-derived neurotrophic factor levels
星形胶质细胞化学遗传学抑制对模式分离和脑源性神经营养因子水平的影响
- 批准号:
575689-2022 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Long Non-coding RNA Regulation in Astrocytes within the Aging Brain
衰老大脑中星形胶质细胞的长非编码RNA调控
- 批准号:
10195946 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Regional characterization of astrocytes in the human brain
人脑星形胶质细胞的区域特征
- 批准号:
RGPIN-2018-05203 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
Astrocytes form tight junctions to organize blood brain barrier
星形胶质细胞形成紧密连接以组织血脑屏障
- 批准号:
21K15092 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Long Non-coding RNA Regulation in Astrocytes within the Aging Brain
衰老大脑中星形胶质细胞的长非编码RNA调控
- 批准号:
10392421 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Long Non-coding RNA Regulation in Astrocytes within the Aging Brain
衰老大脑中星形胶质细胞的长非编码RNA调控
- 批准号:
10602434 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Powering the Brain: Understanding how Astrocytes Contribute to Energy Maintenance
为大脑提供动力:了解星形胶质细胞如何有助于能量维持
- 批准号:
RGPIN-2016-05463 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual
Powering the Brain: Understanding how Astrocytes Contribute to Energy Maintenance
为大脑提供动力:了解星形胶质细胞如何有助于能量维持
- 批准号:
RGPIN-2016-05463 - 财政年份:2020
- 资助金额:
$ 36.81万 - 项目类别:
Discovery Grants Program - Individual