Enhancing MAPK-targeted Therapy in PDX Models of BRAF-Mutant Pediatric Brain Tumors
增强 BRAF 突变儿童脑肿瘤 PDX 模型中的 MAPK 靶向治疗
基本信息
- 批准号:10368111
- 负责人:
- 金额:$ 54.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-08 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAstrocytomaBRAF geneBrain NeoplasmsCause of DeathCell DeathCentral Nervous System NeoplasmsChildChildhoodChildhood Brain NeoplasmChildhood Central Nervous System NeoplasmChildhood GlioblastomaChildhood GliomaClinicalClinical TrialsComplexCytotoxic agentDNA DamageDataDatabasesDiffuse astrocytomaDiseaseDisease ProgressionDoseDrug CombinationsDrug resistanceGangliogliomaGlioblastomaGliomaGoalsJuvenile Pilocytic AstrocytomasLaboratoriesLeadLow Dose RadiationMAP2K1 geneMAPK Signaling Pathway PathwayMEKsMalignant NeoplasmsMediatingMitogen-Activated Protein Kinase InhibitorMitogen-Activated Protein KinasesModelingMutationNF1 geneOutcomePathway interactionsPatientsPediatric Brain Tumor ConsortiumPediatric NeoplasmPediatric Oncology GroupPharmaceutical PreparationsPharmacologyPharmacotherapyPhasePhase I/II TrialPhosphorylationPoint MutationQuality of lifeRadiation PhysicsRadiation therapyRegimenRelapseReportingResearch PersonnelResistanceResistance developmentSignal PathwaySignal TransductionSirolimusTSC2 geneTestingTherapeuticTherapeutic StudiesToxic effectTranslatingTranslational ResearchTuberous Sclerosisbasecell killingchemoradiationcytotoxicitydriver mutationdrug developmentimprovedinhibitorinhibitor therapymouse modelmultidisciplinarymutantneoplastic cellnext generationnovelpatient derived xenograft modelpediatric patientsphase II trialpre-clinicalpreclinical studypreventradiation resistanceresistance mechanismresponsetargeted treatmenttumortumor diagnosistumor progression
项目摘要
Pediatric glioma is characterized by activation of the MAPK pathway, either through a tandem duplication of
the BRAFA locus, or through point mutations (most frequently the V600E mutation). Approximately 1400 new
cases of BRAF-activated childhood brain tumors are diagnosed annually in the US. Recent phase I/II trials have
confirmed the efficacy of MEK inhibitors ((MEKi) for teatment of these cancers. However, for tumors driven by
the BRAF(V600E) mutant patients may progress on selumetinib treatment (i.e. become resistant), or rapidly
progress if drug dose is reduced or treatment stopped (at 2 years as in the recent phase II trial). Thus, while
MEKi is effective in causing tumor regression, it is not curative. Clinical results suggest that selumetinib is equally
as effective as conventional chemo-radiation therapy, but without toxicities associated with intensive chemo-
radiation treatment. Hence, MEK inhibitors usher in a new era in treatment for these patients.
Our studies were some of the only PDX preclinical data that lead to testing of selumetinib (MEK inhibitor) in
the Pediatric Brain Tumor Consortium trial (PBTC029), with efficacy confirmed in the subsequent phase II trial
(NCT01089101). Here we propose preclinical studies that could lead to the next generation of clinical trials
building on the results from current MEKi trials. The studies proposed in this application will use a unique panel
of BRAF(V600E) pediatric brain tumor PDX models to focus on two critical issues: 1) to develop MAPK inhibitor
combinations that selectively enhance tumor cell kill in combination with radiation therapy (RT), and 2) to develop
therapeutic approaches to prevent development of drug resistance. The central hypothesis is that sensitivity
to MAPKi is a consequence of dual MAPK/TORC1 inhibition, and low-dose intermittent rapamycin can prevent
emergence of resistance to MEKi, and also to radiation therapy. These studies will also explore mechanisms of
resistance to MAPK inhibitor combinations and radiation treatment (RT), alone or in combination, and
characterize the mechanism/s by which rapamycin prevents emergence of resistance.
Our overall goal is to identify optimal MAPK/TORC1 inhibitor drug combinations that retard or prevent
emergence of drug or RT resistance, determine the mechanism/s by which rapamycin retards/prevents
emergence of MAPKi and RT resistance, and determine whether such combinations can maintain tumor control
at lower doses of RT. Potentially, the proposed studies will identify novel regimens that will be more efficacious
than selumetinib and ultimately result in the ability to reduce the RT dose in patients, thus improving long-term
outcomes and quality of life.
儿童胶质瘤的特征是MAPK通路的激活,或者是通过串联复制
BRAFA基因座,或通过点突变(最常见的V600E突变)。新增约1400个
在美国,每年都会诊断出BRAF激活的儿童脑瘤病例。最近的I/II期试验已经
证实了MEK抑制剂((Meki))对这些癌症的治疗效果。然而,对于由
BRAF(V600E)突变患者可能在赛鲁米替尼治疗方面取得进展(即变得耐药),或迅速进步
如果药物剂量减少或治疗停止(在最近的第二阶段试验中为2年),则进展。因此,虽然
Meki在导致肿瘤消退方面是有效的,但它不是治愈的。临床结果表明,赛鲁米替尼的疗效相同
与传统的放化疗一样有效,但没有与密集化疗相关的毒性。
放射治疗。因此,MEK抑制剂开启了这些患者治疗的新纪元。
我们的研究是导致赛鲁米替尼(MEK抑制剂)试验的仅有的PDX临床前数据之一。
儿童脑肿瘤联合试验(PBTC029),疗效在随后的II期试验中得到证实
(NCT01089101)。在这里,我们提出了可能导致下一代临床试验的临床前研究
建立在目前Meki试验结果的基础上。本申请中提出的研究将使用一个独特的小组
对BRAF(V600E)儿童脑肿瘤PDX模型的研究主要集中在两个关键问题上:1)开发MAPK抑制剂
与放射治疗(RT)相结合选择性增强肿瘤细胞杀伤的组合,以及2)开发
预防抗药性发展的治疗方法。中心假设是敏感度
MAPKI是MAPK/TORC1双重抑制的结果,小剂量间歇雷帕霉素可预防
出现对Meki的抗药性,也对放射治疗产生抗药性。这些研究还将探索
对MAPK抑制剂组合和放射治疗(RT)的耐药性,单独或联合使用,以及
描述雷帕霉素防止耐药性出现的机制/S。
我们的总体目标是确定最佳的MAPK/TORC1抑制剂药物组合,以延缓或预防
耐药或RT耐药的出现,确定雷帕霉素延缓/预防的机制/S
MAPKi和RT耐药的出现,并确定这种组合是否可以维持肿瘤控制
在较低剂量的RT下。潜在地,拟议的研究将确定更有效的新疗法。
与赛鲁米替尼相比,最终能够减少患者的RT剂量,从而改善长期
结果和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandeep Burma其他文献
Sandeep Burma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandeep Burma', 18)}}的其他基金
Enhancing MAPK-targeted Therapy in PDX Models of BRAF-Mutant Pediatric Brain Tumors
增强 BRAF 突变儿童脑肿瘤 PDX 模型中的 MAPK 靶向治疗
- 批准号:
10175336 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
Radiation-induced senescence in the brain microenvironment: Implications for glioblastoma recurrence and therapy
辐射诱导的大脑微环境衰老:对胶质母细胞瘤复发和治疗的影响
- 批准号:
10394384 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
Radiation-induced senescence in the brain microenvironment: Implications for glioblastoma recurrence and therapy
辐射诱导的大脑微环境衰老:对胶质母细胞瘤复发和治疗的影响
- 批准号:
10211559 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
Enhancing MAPK-targeted Therapy in PDX Models of BRAF-Mutant Pediatric Brain Tumors
增强 BRAF 突变儿童脑肿瘤 PDX 模型中的 MAPK 靶向治疗
- 批准号:
10553688 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
Radiation-induced senescence in the brain microenvironment: Implications for glioblastoma recurrence and therapy
辐射诱导的大脑微环境衰老:对胶质母细胞瘤复发和治疗的影响
- 批准号:
10578763 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
Mechanisms of EXO1 regulation in response to radiation-induced DNA damage
EXO1 响应辐射引起的 DNA 损伤的调节机制
- 批准号:
9926813 - 财政年份:2019
- 资助金额:
$ 54.48万 - 项目类别:
Mechanisms of EXO1 regulation in response to radiation-induced DNA damage
EXO1 响应辐射引起的 DNA 损伤的调节机制
- 批准号:
10063785 - 财政年份:2019
- 资助金额:
$ 54.48万 - 项目类别:
Augmented homologous recombination as a mechanism of acquired temozolomide resistance in glioblastoma
增强同源重组作为胶质母细胞瘤获得性替莫唑胺耐药的机制
- 批准号:
9325481 - 财政年份:2016
- 资助金额:
$ 54.48万 - 项目类别:
Molecular mechanisms of GBM radioresistance and strategies for radiosensitization
GBM放射抵抗的分子机制及放射增敏策略
- 批准号:
8605809 - 财政年份:2011
- 资助金额:
$ 54.48万 - 项目类别:
Molecular mechanisms of GBM radioresistance and strategies for radiosensitization
GBM放射抵抗的分子机制及放射增敏策略
- 批准号:
8042256 - 财政年份:2011
- 资助金额:
$ 54.48万 - 项目类别:
相似海外基金
A Phase 2 biomarker driven, Study of DB107, a Retroviral Replicating Vector, Combined With 5-FC in Patients with Recurrent Glioblastoma or Anaplastic Astrocytoma
由生物标志物驱动的 DB107(一种逆转录病毒复制载体)与 5-FC 联合治疗复发性胶质母细胞瘤或间变性星形细胞瘤患者的 2 期研究
- 批准号:
10722246 - 财政年份:2023
- 资助金额:
$ 54.48万 - 项目类别:
Multimodality Neuroimaging Evaluation of Cognitive Functioning in Lower Grade Astrocytoma
低级别星形细胞瘤认知功能的多模态神经影像评估
- 批准号:
10701775 - 财政年份:2022
- 资助金额:
$ 54.48万 - 项目类别:
Targeting metabolic vulnerabilities in Astrocytoma, IDH-mutant, Grade 4
针对星形细胞瘤、IDH 突变、4 级的代谢脆弱性
- 批准号:
10306229 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
Targeting metabolic vulnerabilities in Astrocytoma, IDH-mutant, Grade 4
针对星形细胞瘤、IDH 突变、4 级的代谢脆弱性
- 批准号:
10491830 - 财政年份:2021
- 资助金额:
$ 54.48万 - 项目类别:
metabolome analysis focusing on the malignant transformation of astrocytoma
关注星形细胞瘤恶性转化的代谢组分析
- 批准号:
19K09520 - 财政年份:2019
- 资助金额:
$ 54.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the tumorigenesis of H3F3A mutations in pediatric high-grade astrocytoma (HGA) and Giant cell tumor of the bone (GCTB).
探索儿童高级星形细胞瘤 (HGA) 和骨巨细胞瘤 (GCTB) 中 H3F3A 突变的肿瘤发生。
- 批准号:
377032 - 财政年份:2017
- 资助金额:
$ 54.48万 - 项目类别:
Fellowship Programs
A Phase 1 Study of M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma.
M032(一种表达 IL-12 的基因工程 HSV-1)在复发/进行性多形性胶质母细胞瘤、间变性星形细胞瘤或胶质肉瘤患者中的 1 期研究。
- 批准号:
9455636 - 财政年份:2017
- 资助金额:
$ 54.48万 - 项目类别:
Defining the role of the histone 3 (H3.3G34R) mutation in the pathogenesis of pediatric high grade astrocytoma
定义组蛋白 3 (H3.3G34R) 突变在儿童高级星形细胞瘤发病机制中的作用
- 批准号:
368929 - 财政年份:2017
- 资助金额:
$ 54.48万 - 项目类别:
Operating Grants
Detection and clinical application of pilocytic astrocytoma minimal residual disease
毛细胞型星形细胞瘤微小残留病的检测及临床应用
- 批准号:
16K10011 - 财政年份:2016
- 资助金额:
$ 54.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Origin of the microvascular proliferation in pilocytic astrocytoma
毛细胞型星形细胞瘤微血管增殖的起源
- 批准号:
16K10763 - 财政年份:2016
- 资助金额:
$ 54.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)