Understanding developmental patterning's influence on morphogenesis

了解发育模式对形态发生的影响

基本信息

  • 批准号:
    10389165
  • 负责人:
  • 金额:
    $ 6.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Abstract Morphogenetic events utilize precisely timed changes in cell shape. One of the fundamental mechanisms cells use to change their shape is apical constriction. Apical constriction relies on the contraction of cortical actomyosin networks that causes the apical side of a cell to shrink, resulting in tissue morphogenesis. In humans, apical constriction aids the internalization of the future spinal cord and brain in a process known as neural tube closure. Failure of apical constriction can lead to neural tube defects, which accounts for birth defects in 1 out of every 3,000 live births. Therefore, uncovering the processes that govern apical constriction will advance our understanding of basic mechanisms underlying cell shape changes, causes, and potential treatments for neural tube defects. Despite current knowledge of developmental patterning of apical constriction, precise genetic mechanisms that govern which cells undergo apical constriction, how the apical surface is determined, and when to constrict, remain only partially understood. I plan to use Caenorhabditis elegans (C. elegans) gastrulation, a morphogenetic event driven by apical constriction, to address these issues. Gastrulation in C. elegans starts with the internalization of the two endodermal precursor cells (EPCs), which depend on the spatial and temporal precision of the expression of cell fate specification factors end-1 and end-3. However, mechanistic links between end-1,3 and the resulting apical constriction remain largely unknown. Using the genetically tractable and optically clear C. elegans, I plan to dissect the cellular mechanisms that translate developmental patterning into specific, localized, and precisely timed cell shape changes. Comparing the transcriptome of wild-type and end-3 null embryos, I identified thirty target genes whose expression depends on end-3. After screening these genes, I identified ten new genes that contribute to C. elegans gastrulation. In Aim 1, I will use a variety of cell biological approaches to identify the mechanisms by which some of these genes couple developmental patterning to changing cell shape. Aim 2 focuses on the myosin-activating kinase MRCK-1 localizes to the apical cell cortex of EPCs and is required for apical constriction. MRCK-1 is dependent on end-1,3 expression and becomes localized apically specifically in only EPCs despite MRCK-1 being present at similar levels in all cells. I will use MRCK-1 localization as a molecular foothold for understanding how a pivotal protein becomes recruited to the apical cortex in only certain cells. Aim 2 will further investigate which domains of MRCK-1 are required for this localization pattern and identify interactors with these domains that function to initiate apical constriction, to better connect cell fate regulators and intracellular localization of a key protein. Overall, I propose the use of genetic, biochemical, and imaging techniques to advance our understanding of how transcriptional networks and other developmental patterning inputs deploy localized factors that influence cell shape changes.
摘要 形态发生事件利用细胞形状的精确定时变化。根本的一 细胞用来改变其形状的机制是顶端收缩。心尖收缩依赖于 皮质肌动球蛋白网络的一部分,导致细胞顶端收缩,导致组织 形态发生在人类中,顶端收缩有助于未来脊髓和大脑的内化, 这一过程被称为神经管闭合。顶端收缩的失败可导致神经管缺陷, 每3 000名活产婴儿中就有1名存在出生缺陷。因此,揭示控制 顶端收缩将促进我们对细胞形状变化的基本机制的理解, 神经管缺陷的原因和潜在的治疗方法。 尽管目前对顶端缢缩的发育模式的了解,精确的遗传学研究还不清楚。 控制哪些细胞经历顶端收缩的机制,如何确定顶端表面,以及 什么时候收缩,仍然只是部分理解。我计划使用秀丽隐杆线虫(C. elegans) 原肠胚形成,由顶端收缩驱动的形态发生事件,以解决这些问题。C. elegans从两个内胚层前体细胞(EPCs)的内化开始,这取决于 细胞命运特化因子end-1和end-3表达的空间和时间精度。然而,在这方面, 末端-1,3和所产生的顶端收缩之间的机械联系仍然很大程度上未知。使用 遗传上易处理的和光学上透明的C.我计划剖析细胞机制, 发育模式转化为特定的、局部的和精确定时的细胞形状变化。比较 通过分析野生型和末端3缺失胚胎的转录组,我确定了30个靶基因,它们的表达依赖于 在第三端。在筛选了这些基因后,我发现了10个新的基因,这些基因对C。原肠形成在 目的1,我将使用各种细胞生物学方法来确定其中一些机制, 基因将发育模式与细胞形状的改变结合起来。 目的2:肌球蛋白激活激酶MRCK-1定位于内皮祖细胞的顶细胞皮层, 是心尖收缩所必需的MRCK-1依赖于末端-1,3的表达,并定位于顶端 特别是仅在EPC中,尽管MRCK-1在所有细胞中以相似的水平存在。我将使用MRCK-1 定位作为理解关键蛋白如何被募集到顶端的分子立足点 只在某些细胞中存在。目的2将进一步研究MRCK-1的哪些结构域是必需的 定位模式,并确定与这些结构域的相互作用,功能启动顶端收缩, 更好地连接细胞命运调节因子和关键蛋白的细胞内定位。总的来说,我建议使用 遗传、生化和成像技术,以促进我们对转录网络如何 和其他发育模式输入部署影响细胞形状变化的局部因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Bowie其他文献

Emily Bowie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Bowie', 18)}}的其他基金

Understanding developmental patterning's influence on morphogenesis
了解发育模式对形态发生的影响
  • 批准号:
    10541837
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 6.76万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了