Understanding developmental patterning's influence on morphogenesis
了解发育模式对形态发生的影响
基本信息
- 批准号:10541837
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAffectApicalAreaBiochemicalBiologicalBrainCaenorhabditis elegansCandidate Disease GeneCell PolarityCell ShapeCell surfaceCellsCellular biologyComplementCongenital AbnormalityContractsCytoskeletonData SetDefectDevelopmentEmbryoEndodermEventFailureFutureGenesGeneticGenetic TranscriptionGoalsHumanImaging TechniquesKnowledgeLeadLinkLive BirthMass Spectrum AnalysisModelingMolecularMorphogenesisMyosin ATPaseNematodaNeural Tube ClosureNeural Tube DefectsNeural tubeNonmuscle Myosin Type IIAOpticsOrganismPatternPhosphotransferasesPrincipal InvestigatorProcessProteinsRNA InterferenceRegulationReproducibilityRoleShapesSideSpinal CordSurfaceTestingTimeTissuesTrainingTranscriptTranslatingUnited StatesUp-RegulationWorkbiochemical toolscareercell cortexcell fate specificationconstrictiongastrulationinsightknock-downmutantneuroepitheliumnovelperoxisomeprecursor cellrecruitresponsescreeningspatiotemporalsuccesstranscription factortranscriptometranscriptome sequencing
项目摘要
Abstract
Morphogenetic events utilize precisely timed changes in cell shape. One of the fundamental
mechanisms cells use to change their shape is apical constriction. Apical constriction relies on the contraction
of cortical actomyosin networks that causes the apical side of a cell to shrink, resulting in tissue
morphogenesis. In humans, apical constriction aids the internalization of the future spinal cord and brain in a
process known as neural tube closure. Failure of apical constriction can lead to neural tube defects, which
accounts for birth defects in 1 out of every 3,000 live births. Therefore, uncovering the processes that govern
apical constriction will advance our understanding of basic mechanisms underlying cell shape changes,
causes, and potential treatments for neural tube defects.
Despite current knowledge of developmental patterning of apical constriction, precise genetic
mechanisms that govern which cells undergo apical constriction, how the apical surface is determined, and
when to constrict, remain only partially understood. I plan to use Caenorhabditis elegans (C. elegans)
gastrulation, a morphogenetic event driven by apical constriction, to address these issues. Gastrulation in C.
elegans starts with the internalization of the two endodermal precursor cells (EPCs), which depend on the
spatial and temporal precision of the expression of cell fate specification factors end-1 and end-3. However,
mechanistic links between end-1,3 and the resulting apical constriction remain largely unknown. Using the
genetically tractable and optically clear C. elegans, I plan to dissect the cellular mechanisms that translate
developmental patterning into specific, localized, and precisely timed cell shape changes. Comparing the
transcriptome of wild-type and end-3 null embryos, I identified thirty target genes whose expression depends
on end-3. After screening these genes, I identified ten new genes that contribute to C. elegans gastrulation. In
Aim 1, I will use a variety of cell biological approaches to identify the mechanisms by which some of these
genes couple developmental patterning to changing cell shape.
Aim 2 focuses on the myosin-activating kinase MRCK-1 localizes to the apical cell cortex of EPCs and
is required for apical constriction. MRCK-1 is dependent on end-1,3 expression and becomes localized apically
specifically in only EPCs despite MRCK-1 being present at similar levels in all cells. I will use MRCK-1
localization as a molecular foothold for understanding how a pivotal protein becomes recruited to the apical
cortex in only certain cells. Aim 2 will further investigate which domains of MRCK-1 are required for this
localization pattern and identify interactors with these domains that function to initiate apical constriction, to
better connect cell fate regulators and intracellular localization of a key protein. Overall, I propose the use of
genetic, biochemical, and imaging techniques to advance our understanding of how transcriptional networks
and other developmental patterning inputs deploy localized factors that influence cell shape changes.
抽象的
形态发生事件利用细胞形状的精确定时变化。基本之一
细胞用来改变其形状的机制是根尖的收缩。顶部收缩依赖于收缩
导致细胞的顶端缩小的皮质肌动球蛋白网络的收缩,导致组织
形态发生。在人类中,根尖的收缩有助于未来的脊髓和大脑的内在化
被称为神经管闭合的过程。根尖收缩的失败会导致神经管缺陷,这
每3,000个活产中有1个出生缺陷。因此,发现管理的过程
顶部收缩将提高我们对细胞形状基本机制变化的基本机制的理解,
原因和神经管缺陷的潜在治疗方法。
尽管当前对顶端收缩的发育模式知识,但精确的遗传
控制哪些细胞经历顶端收缩的机制,如何确定顶部表面以及
何时收缩,仅部分理解。我计划使用秀丽隐杆线虫(秀丽隐杆线虫)
胃结构是由顶部收缩驱动的形态发生事件,以解决这些问题。 C.
秀丽隐杆线虫始于两个内胚层前体细胞(EPC)的内在化,这取决于
细胞命运规范因子的表达的空间和时间精度结束1和3。然而,
1,3和由此产生的顶端收缩之间的机械联系在很大程度上未知。使用
我计划剖析转化的细胞机制
发育模式将特定,局部和精确的定时细胞形状变化变化。比较
野生型和End-3 null胚胎的转录组,我确定了三十个靶基因,其表达取决于
在3结束上。筛选这些基因后,我发现了十个有助于秀丽隐杆线虫胃肠杆的新基因。在
AIM 1,我将使用各种细胞生物学方法来识别其中一些的机制
基因将发育模式迈向变化的细胞形状。
AIM 2着重于肌球蛋白激活激酶MRCK-1定位于EPC的顶端细胞皮层和
顶端收缩需要。 MRCK-1取决于1,3的表达,顶端变为局部
特别是在EPC中,尽管MRCK-1在所有细胞中都存在相似的水平。我将使用MRCK-1
本地化是一种分子立足,用于理解关键蛋白如何募集到顶端
仅在某些细胞中皮质。 AIM 2将进一步调查为此需要哪些MRCK-1域
本地化模式并识别与这些功能以启动顶端收缩的这些域的交互者
更好地连接细胞命运调节剂和关键蛋白的细胞内定位。总的来说,我建议使用
遗传,生化和成像技术,以促进我们对转录网络的理解
以及其他发育模式输入部署影响细胞形状变化的局部因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Bowie其他文献
Emily Bowie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Bowie', 18)}}的其他基金
Understanding developmental patterning's influence on morphogenesis
了解发育模式对形态发生的影响
- 批准号:
10389165 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别: