Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
基本信息
- 批准号:10213148
- 负责人:
- 金额:$ 64.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent PathwaysAftercareAnimalsBiologicalBionicsBrain-Derived Neurotrophic FactorCaliberChronicCollaborationsCombined Modality TherapyDataDevelopmentElectrophysiology (science)FutureGeneticGenetic TechniquesGoalsH-ReflexHyperreflexiaHyporeflexiaIn VitroInterneuronsKnowledgeLaboratoriesLightLocomotionLocomotor RecoveryMediatingMethodsModelingMolecularMolecular GeneticsMotorMusNeurotrophic Tyrosine Kinase Receptor Type 2PathologyPatternPharmacologyPhysiologicalPopulationPreparationPreventionProcessRattusRecoveryRecovery of FunctionReflex actionRehabilitation therapyResearch PersonnelRobotRodentSensoryShapesSignal TransductionSpatial DistributionSpecificitySpinalSpinal CordSpinal cord injurySystemTactileTestingTherapeuticTimeTrainingTransgenic MiceVariantVentral RootsViralWalkingWorkexperimental studyfunctional improvementimprovedimproved outcomein vivoloss of functionmotor recoverymouse modelneural stimulationnovelnovel therapeutic interventionoptogeneticspresynapticpreventrehabilitation paradigmrelating to nervous systemsensory gatingside effectskillsspinal nerve posterior rootspinal reflexsynergismtherapeutic targettreadmill
项目摘要
Abstract
Our project represents a new collaboration of two laboratories with differing but complementary skills, with the
goal of understanding plasticity of specific spinal circuits and the effects of epidural stimulation on these. The
project is built on new observations and paradigms developed by both our laboratories. Although we
understand increasingly more about both (a) spinal circuits at the level of molecular genetics identified
developmental interneuron classes and (b) spinal plasticity in the context of spinal cord injury (SCI), these two
types of information are only rarely integrated experimentally to fully leverage the power of their combination.
We will use a novel paradigm which explores the combination of biological/viral, bionic and rehabilitation
therapies in complete SCI in both the rat and the mouse in order to obtain the power of both approaches in
analyzing spinal plasticity and pathology after SCI. In the rat model in this paradigm we already have new data
showing that the combination of rehabilitation and virally derived BDNF treatment after complete SCI leads to
significant gains in function as a result of this combination treatment. However, in 40% of the treated rats, after
the initial high gains achieved, it was observed that a hyperreflexia developed, causing a large collapse in
function. In contrast, it was observed that in rats which also receive epidural stimulation (ES) of lumbosacral
spinal cord during treatment (in addition to the viral driven BDNF and rehabilitative treatments) no rats showed
any such hyperreflexia. This project seeks to use this paradigm to understand plasticity of spinal circuits that
support function, create hyperreflexia and collapse, and that prevent such collapse with ES. We do not yet
know if there exist specific time windows for the ES efficacy in preventing collapse. The ES in some way steers
the course of plasticity away from pathology in the model when applied in a timely way. Our overall Aims are to
characterize the best timing of ES and to understand in detail many of the changes that result. We seek to
determine if specific genetically identified circuits show plasticity, and are targets of ES, and how these circuits
contribute and alter in order to support walking functions. We also seek to understand what goes awry to cause
collapse of function in some animals without ES treatment. Our planned work is important and impactful
because it will shed new light on circuit changes and function after SCI. It will test how identified interneuron
populations and functional circuits in the spinal cord are altered. It will deepen and broaden our understanding
of the actions of epidural stimulation in promoting and shaping spinal plasticity supporting walking, and identify
the therapeutic targets, windows of action, and interactions of epidural stimulation with other therapies. ES is
becoming a promising and broadly applicable therapy for SCI conditions, but our understanding of fundamental
mechanisms of action and interaction with other therapies remains limited. This project begins to address this
gap using precise physiological and genetic methods.
摘要
我们的项目代表了两个具有不同但互补技能的实验室的新合作,
目的是了解特定脊髓回路的可塑性以及硬膜外刺激对这些回路的影响。的
该项目是建立在我们两个实验室开发的新的观察和范式。虽然我们
越来越多地了解两个(a)在分子遗传学水平上确定的脊髓回路
(B)脊髓损伤(SCI)背景下的脊髓可塑性,这两个
各种类型的信息很少通过实验进行整合,以充分利用其组合的力量。
我们将使用一种新的范式,探索生物/病毒,仿生和康复的结合
在大鼠和小鼠中进行完全SCI的治疗,以获得两种方法的功效,
分析脊髓损伤后的脊髓可塑性和病理学。在这种模式的大鼠模型中,我们已经有了新的数据
表明完全SCI后康复和病毒衍生的BDNF治疗的组合导致
这种联合治疗的结果是功能显着改善。然而,在40%的治疗大鼠中,
在达到最初的高增益后,观察到反射亢进发展,导致
功能与此相反,在同样接受腰骶部硬膜外刺激(ES)的大鼠中观察到,
在治疗期间(除了病毒驱动的BDNF和康复治疗之外),没有大鼠显示
任何反射亢进。该项目旨在使用这种范式来理解脊髓回路的可塑性,
支持功能,产生反射亢进和塌陷,并通过ES防止这种塌陷。我们还不
知道是否存在ES在防止崩溃方面的有效性的特定时间窗口。ES在某种程度上
及时应用可使模型的可塑性过程远离病理。我们的总体目标是
描述ES的最佳时机,并详细了解导致的许多变化。我们寻求
确定特定的遗传识别电路是否显示出可塑性,并且是ES的目标,以及这些电路如何
有助于和改变以支持行走功能。我们还试图了解是什么出了差错,
在没有ES治疗的一些动物中的功能崩溃。我们计划的工作是重要和有影响力的
因为它将揭示脊髓损伤后电路的变化和功能。它将测试如何识别中间神经元
脊髓中的种群和功能回路发生改变。它将加深和拓宽我们的理解
硬膜外刺激在促进和塑造脊柱可塑性支持行走中的作用,并确定
硬膜外刺激与其他疗法的治疗靶点、作用窗口和相互作用。ES是
成为一个有前途的和广泛适用的治疗SCI条件,但我们的理解基本
作用机制和与其他疗法的相互作用仍然有限。这个项目开始解决这个问题
利用精确的生理学和遗传学的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly J Dougherty其他文献
Kimberly J Dougherty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly J Dougherty', 18)}}的其他基金
Mechanisms of locomotor rhythm generation in rodent spinal cord
啮齿动物脊髓运动节律的产生机制
- 批准号:
10708988 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Mechanisms of locomotor rhythm generation in rodent spinal cord
啮齿动物脊髓运动节律的产生机制
- 批准号:
10605444 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Specific spinal locomotor circuit alterations induced by epidural stimulation
硬膜外刺激引起的特定脊髓运动回路改变
- 批准号:
10041067 - 财政年份:2020
- 资助金额:
$ 64.04万 - 项目类别:
Crucial spinal circuit changes that mediate locomotion benefits of combined biological/bionic/rehabilitation therapies after spinal cord injury.
脊髓损伤后联合生物/仿生/康复治疗的关键脊髓回路变化可调节运动益处。
- 批准号:
10447027 - 财政年份:2018
- 资助金额:
$ 64.04万 - 项目类别:
CRCNS: Rhythm generation in rodent spinal cord
CRCNS:啮齿动物脊髓节律的产生
- 批准号:
9114688 - 财政年份:2015
- 资助金额:
$ 64.04万 - 项目类别:
CRCNS: Rhythm generation in rodent spinal cord
CRCNS:啮齿动物脊髓节律的产生
- 批准号:
9325618 - 财政年份:2015
- 资助金额:
$ 64.04万 - 项目类别:
Plasticity of Spinal Inhibition in Spinal Cord Injury
脊髓损伤中脊髓抑制的可塑性
- 批准号:
6836863 - 财政年份:2004
- 资助金额:
$ 64.04万 - 项目类别:
Plasticity of Spinal Inhibition in Spinal Cord Injury
脊髓损伤中脊髓抑制的可塑性
- 批准号:
6938536 - 财政年份:2004
- 资助金额:
$ 64.04万 - 项目类别:
相似海外基金
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9903468 - 财政年份:2017
- 资助金额:
$ 64.04万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9309546 - 财政年份:2017
- 资助金额:
$ 64.04万 - 项目类别:
Functional study of the bladder mechanosensitive afferent pathways
膀胱机械敏感传入通路的功能研究
- 批准号:
23791743 - 财政年份:2011
- 资助金额:
$ 64.04万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Interactions of gastric hormones with vagal afferent pathways and the role of this system in obesity
胃激素与迷走神经传入途径的相互作用以及该系统在肥胖中的作用
- 批准号:
nhmrc : 565186 - 财政年份:2009
- 资助金额:
$ 64.04万 - 项目类别:
NHMRC Project Grants
In photosensory pineal organ, the functions of luminosity and chromatic signals and their afferent pathways.
在光感觉松果体中,光度和色度信号的功能及其传入途径。
- 批准号:
20570068 - 财政年份:2008
- 资助金额:
$ 64.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twenty-four hour rhythms of the hypothalamic CRF production and release, and the afferent pathways from the light- and food-entrainable circadian oscillations.
下丘脑 CRF 产生和释放的二十四小时节律,以及光和食物夹带昼夜节律振荡的传入通路。
- 批准号:
01570081 - 财政年份:1989
- 资助金额:
$ 64.04万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
AFFERENT PATHWAYS FROM RECTUM IN VARIOUS CONSTIPATION SYNDROMES
各种便秘综合征中直肠的传入通路
- 批准号:
5218542 - 财政年份:
- 资助金额:
$ 64.04万 - 项目类别: