Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
基本信息
- 批准号:10220922
- 负责人:
- 金额:$ 80.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Academic DetailingAddressAdmission activityAmericanAreaBuprenorphineCensusesCitiesClassificationCommunitiesCommunity PharmacyDataDecision MakingDisease OutbreaksDoseEmergency medical serviceEnvironmentEpidemicFutureGoalsHealthHealth PrioritiesHospitalsInstitutionInterventionIntervention Community TrialIntervention TrialLightMachine LearningMethadoneModelingMorbidity - disease rateNaloxoneNational Institute of Drug AbuseNeighborhoodsOverdosePharmaceutical PreparationsPhasePoliciesPopulationPredictive AnalyticsPreventionPrevention programProbabilityPublic HealthPublishingRandomizedRecording of previous eventsRecordsRecoveryResearch PriorityResource AllocationResourcesRhode IslandRiskServicesSourceStrategic PlanningSumSystemTestingUnited StatesVisitWorkaddictionbaseevidence baseexperienceexperimental studyhigh riskimprovedindexingmachine learning methodmortalitynovelopioid agonist therapyopioid misuseopioid mortalityopioid overdoseopioid policyopioid use disorderoverdose deathoverdose preventionoverdose riskpeerpopulation basedprediction algorithmpredictive modelingprescription opioidpreventpreventive interventionprimary outcomeprogramspublic health prioritiesreferral servicesresource guidesresponsespatiotemporalsurveillance datatooltreatment arm
项目摘要
PROJECT SUMMARY
Overdose deaths have skyrocketed in the United States since 1999. The epidemic has prompted widespread
federal and state actions, yet the number of people who die of an overdose continues to increase. In light of
the accelerating and rapidly evolving overdose epidemic, new strategies are needed to identify communities
most at risk, and to utilize resources more effectively to curb overdose deaths. To address these public health
priorities, we will develop a forecasting tool to predict overdose deaths before they occur, and then conduct a
randomized, statewide, community-level intervention to evaluate resource targeting based on these
predictions. The study will take place in Rhode Island, a state with the 10th highest rate of overdose fatality in
2016. The study has two phases. First, we will develop a predictive analytics model that forecasts future
overdose mortality at the neighborhood-level, using publicly available information and data from a
multicomponent overdose surveillance system. This tool, called PROVIDENT (Preventing Overdose using
Information and Data from the Environment) will be used to predict the likelihood of magnitude of future
overdose deaths in every neighborhood across Rhode Island. Next, we will conduct a randomized policy
experiment to evaluate whether targeting overdose prevention interventions to neighborhoods at highest risk
reduces overdose morbidity and mortality. The state's department of health will receive PROVIDENT model
predictions for half of the 39 cities/towns in Rhode Island. Within these cities/town, the health department will
work with stakeholders to target overdose prevention interventions to neighborhoods with the highest
probability of future overdose deaths. Interventions include efforts to: (1) prevent high-risk prescribing
(through academic detailing and other educational efforts); (2) expand access to opioid agonist therapy,
including buprenorphine and methadone; (3) increase naloxone distribution (through community and
pharmacy-based efforts); and (4) expand street-based peer recovery coaching and referrals. Control
cities/town will continue to receive these interventions, but without targeting to specific neighborhoods. Fatal
and non-fatal opioid overdose rates in the control cities/towns will be compared to those that received the
PROVIDENT model predictions. To achieve these aims, we will leverage a unique partnership between an
academic institution and a state's health department, which allows for unprecedented access to and sharing
of population-based overdose surveillance data. Our results will improve public health decision-making and
inform resource allocation to communities that should be prioritized for evidence-based prevention, treatment,
recovery, and overdose rescue services. If found to be effective, the PROVIDENT forecasting model will be
disseminated to other states, which could adapt the tool to guide resource allocation and maximize public
health impact. In sum, this project is highly responsive to a top research priority of the National Institute on
Drug Abuse, and directly addresses one of the nation's most challenging public health crises.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena Cerda其他文献
Magdalena Cerda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena Cerda', 18)}}的其他基金
A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
- 批准号:
10629749 - 财政年份:2023
- 资助金额:
$ 80.74万 - 项目类别:
Understanding the short- and long-term effects of the COVID-19 pandemic on the overdose crisis
了解 COVID-19 大流行对药物过量危机的短期和长期影响
- 批准号:
10739492 - 财政年份:2023
- 资助金额:
$ 80.74万 - 项目类别:
Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
- 批准号:
10708823 - 财政年份:2022
- 资助金额:
$ 80.74万 - 项目类别:
Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
- 批准号:
10521949 - 财政年份:2022
- 资助金额:
$ 80.74万 - 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
- 批准号:
10055772 - 财政年份:2019
- 资助金额:
$ 80.74万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
10026087 - 财政年份:2019
- 资助金额:
$ 80.74万 - 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
- 批准号:
9987897 - 财政年份:2019
- 资助金额:
$ 80.74万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
9817054 - 财政年份:2019
- 资助金额:
$ 80.74万 - 项目类别:
Examining the Synergistic Effects of Cannabis and Prescription Opioid Policies on Chronic Pain, Opioid Prescribing, and Opioid Overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
- 批准号:
10208128 - 财政年份:2019
- 资助金额:
$ 80.74万 - 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
- 批准号:
10173211 - 财政年份:2019
- 资助金额:
$ 80.74万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 80.74万 - 项目类别:
Research Grant














{{item.name}}会员




