Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial

使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验

基本信息

  • 批准号:
    9817054
  • 负责人:
  • 金额:
    $ 71.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Overdose deaths have skyrocketed in the United States since 1999. The epidemic has prompted widespread federal and state actions, yet the number of people who die of an overdose continues to increase. In light of the accelerating and rapidly evolving overdose epidemic, new strategies are needed to identify communities most at risk, and to utilize resources more effectively to curb overdose deaths. To address these public health priorities, we will develop a forecasting tool to predict overdose deaths before they occur, and then conduct a randomized, statewide, community-level intervention to evaluate resource targeting based on these predictions. The study will take place in Rhode Island, a state with the 10th highest rate of overdose fatality in 2016. The study has two phases. First, we will develop a predictive analytics model that forecasts future overdose mortality at the neighborhood-level, using publicly available information and data from a multicomponent overdose surveillance system. This tool, called PROVIDENT (Preventing Overdose using Information and Data from the Environment) will be used to predict the likelihood of magnitude of future overdose deaths in every neighborhood across Rhode Island. Next, we will conduct a randomized policy experiment to evaluate whether targeting overdose prevention interventions to neighborhoods at highest risk reduces overdose morbidity and mortality. The state's department of health will receive PROVIDENT model predictions for half of the 39 cities/towns in Rhode Island. Within these cities/town, the health department will work with stakeholders to target overdose prevention interventions to neighborhoods with the highest probability of future overdose deaths. Interventions include efforts to: (1) prevent high-risk prescribing (through academic detailing and other educational efforts); (2) expand access to opioid agonist therapy, including buprenorphine and methadone; (3) increase naloxone distribution (through community and pharmacy-based efforts); and (4) expand street-based peer recovery coaching and referrals. Control cities/town will continue to receive these interventions, but without targeting to specific neighborhoods. Fatal and non-fatal opioid overdose rates in the control cities/towns will be compared to those that received the PROVIDENT model predictions. To achieve these aims, we will leverage a unique partnership between an academic institution and a state's health department, which allows for unprecedented access to and sharing of population-based overdose surveillance data. Our results will improve public health decision-making and inform resource allocation to communities that should be prioritized for evidence-based prevention, treatment, recovery, and overdose rescue services. If found to be effective, the PROVIDENT forecasting model will be disseminated to other states, which could adapt the tool to guide resource allocation and maximize public health impact. In sum, this project is highly responsive to a top research priority of the National Institute on Drug Abuse, and directly addresses one of the nation's most challenging public health crises.
项目摘要 自1999年以来,美国的过量死亡人数急剧上升。这一流行病引起了广泛的 联邦和州政府采取了行动,但死于吸毒过量的人数仍在继续增加。鉴于 加速和迅速演变的过量流行病,需要新的战略,以确定社区 我们呼吁各国政府采取措施,确保最易受危害的人的健康,并更有效地利用资源,遏制过量用药造成的死亡。为了解决这些公共卫生问题, 优先事项,我们将开发一种预测工具,在过量死亡发生之前预测它们,然后进行 随机,全州,社区一级的干预,以评估资源的目标,根据这些 预测。这项研究将在罗得岛进行,该州是美国吸毒过量死亡率第10高的州。 2016.研究分两个阶段。首先,我们将开发一个预测分析模型, 过量死亡率在社区一级,使用公开的信息和数据,从一个 多组分过量监测系统。这种工具,称为PROVIDENT(预防过量使用 环境信息和数据)将被用于预测未来的可能性 罗得岛每个社区都有吸毒过量死亡的案例接下来,我们将进行随机化的政策 实验,以评估是否有针对性的过量预防干预措施,以最高风险的社区 减少过量的发病率和死亡率。州卫生部将收到PROVIDENT模型 罗得岛39个城镇中有一半的预测。在这些城市/城镇,卫生部门将 与利益相关者合作,将过量预防干预措施的目标锁定在 未来过量死亡的可能性。干预措施包括努力:(1)防止高风险处方 (通过学术详述和其他教育工作);(2)扩大阿片类激动剂治疗的可及性, 包括丁丙诺啡和美沙酮;(3)增加纳洛酮分布(通过社区和 (4)扩大街头同伴康复辅导和转介。控制 城市/城镇将继续接受这些干预措施,但不针对具体的社区。致命 对照城市/城镇的非致命性阿片类药物过量率将与接受 提供模型预测。为了实现这些目标,我们将利用一个独特的伙伴关系, 学术机构和州卫生部门,这使得前所未有的访问和共享 基于人群的过量用药监测数据。我们的研究结果将改善公共卫生决策, 向应作为循证预防、治疗 康复和过量抢救服务如果发现有效,PROVIDENT预测模型将 向其他国家传播,这些国家可以调整这一工具,以指导资源分配, 健康影响。总之,该项目高度响应了国家研究所的一项首要研究重点, 药物滥用,并直接解决国家最具挑战性的公共卫生危机之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magdalena Cerda其他文献

Magdalena Cerda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magdalena Cerda', 18)}}的其他基金

A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
  • 批准号:
    10629749
  • 财政年份:
    2023
  • 资助金额:
    $ 71.87万
  • 项目类别:
Understanding the short- and long-term effects of the COVID-19 pandemic on the overdose crisis
了解 COVID-19 大流行对药物过量危机的短期和长期影响
  • 批准号:
    10739492
  • 财政年份:
    2023
  • 资助金额:
    $ 71.87万
  • 项目类别:
Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
  • 批准号:
    10708823
  • 财政年份:
    2022
  • 资助金额:
    $ 71.87万
  • 项目类别:
Large Data Spatiotemporal Modeling of Optimal Combinations of Interventions to Reduce Opioid Harm in the United States
美国减少阿片类药物危害的最佳干预措施组合的大数据时空建模
  • 批准号:
    10521949
  • 财政年份:
    2022
  • 资助金额:
    $ 71.87万
  • 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
  • 批准号:
    10055772
  • 财政年份:
    2019
  • 资助金额:
    $ 71.87万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10026087
  • 财政年份:
    2019
  • 资助金额:
    $ 71.87万
  • 项目类别:
Examining the synergistic effects of cannabis and prescription opioid policies on chronic pain, opioid prescribing, and opioid overdose
检查大麻和处方阿片类药物政策对慢性疼痛、阿片类药物处方和阿片类药物过量的协同作用
  • 批准号:
    9987897
  • 财政年份:
    2019
  • 资助金额:
    $ 71.87万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10220922
  • 财政年份:
    2019
  • 资助金额:
    $ 71.87万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10173211
  • 财政年份:
    2019
  • 资助金额:
    $ 71.87万
  • 项目类别:
Reducing Drug-Related Mortality Using Predictive Analytics: A Randomized, Statewide, Community Intervention Trial
使用预测分析降低药物相关死亡率:一项随机、全州范围的社区干预试验
  • 批准号:
    10554963
  • 财政年份:
    2019
  • 资助金额:
    $ 71.87万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了