Large scale genome sequencing and integrative analyses to define genomic predictors of recurrent pregnancy loss
大规模基因组测序和综合分析以确定复发性流产的基因组预测因素
基本信息
- 批准号:10226657
- 负责人:
- 金额:$ 152.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:BioinformaticsBiometryCell LineChromosomesClinicClinicalClinical ResearchCodeCollaborationsCollectionConceptionsCounselingCouplesDataData AnalysesData ScienceData SetData SourcesDetectionDevelopmentDiagnosisDiseaseEtiologyEvaluationFathersFetal DevelopmentFundingFutureGenerationsGenesGeneticGenetic Predisposition to DiseaseGenetic studyGenomeGenomic approachGenomicsGoalsHeterozygoteHumanHuman DevelopmentHuman GeneticsKnock-outLeadLeadershipMachine LearningMapsMendelian disorderMethodsMinorityMitochondriaModelingMosaicismMothersMouse Cell LineMusMutationNational Institute of Child Health and Human DevelopmentNatureNetwork-basedPathogenicityPediatric Cardiac Genomics ConsortiumPhenotypePilot ProjectsPopulationPregnancyPregnancy lossRecurrenceReproductive HealthReproductive MedicineResearchSample SizeSamplingShort Tandem RepeatSiblingsSiteStructureSumTestingUntranslated RNAVariantWomanWorkbasebiobankbioinformatics toolclinical phenotypeclinical research sitecohortcomputerized data processingdesignexome sequencingexperiencegene discoverygenetic architecturegenetic variantgenome sequencinggenome-widegenomic predictorsgenomic variationgrandparenthuman pangenomeimprovedinnovationmultidisciplinarymultimodalitynovelrecruittooltranscriptome sequencingvariant detectionwhole genome
项目摘要
SUMMARY: Recurrent pregnancy loss (RPL) occurs in approximately 5% of clinically recognized pregnancy
losses. The etiology of RPL is not well characterized: after excluding the known etiologies, approximately half
of women with RPL still have no identifiable cause. The fact that RPL is, in fact, recurrent suggests a strong
genetic component, however there is currently a very limited understanding of the genomic contributions to
RPL. Previous studies are typically deficient in their design, limited by small sample size, incomplete clinical
phenotyping and/or the recruitment of singletons only. In this proposal, we put forward our plan to recruit 1000
rigorously-phenotyped RPL trios including from diverse and underrepresented backgrounds across the US and
to apply WGS and sophisticated variant detection and interpretation methods developed by our labs to identify
pathogenic and likely pathogenic variants for RPL. We will then perform comprehensive integrative data
analyses to define the genetic basis of unexplained RPL and map the genes and regions of the chromosome
that are absolutely required for human development and a successful pregnancy. Our variant interpretation
pipeline includes cutting edge approaches to map likely pathogenic noncoding and structural variants rarely
assessed in any pregnancy loss study. We will also perform a pilot RNA-seq study to assess the utility of this
approach for gene discovery in the pregnancy loss setting. We will first look for recessive pathogenic variation,
including compound heterozygosity and then test for models for de novo mosaicism, mitochondrial mutations,
regulatory noncoding variation and overall mutational burden. From these combined analyses, we expect to
uncover many variants in genes and regions of the chromosome that are intolerable to functional variation,
which we define as the human intolerome. We will build on our previous studies to map the intolerome by
combining i) available data from all clinical studies to define the genetic etiology of unexplained pregnancy
loss, including data generated in this proposal and in our prior work, ii) network-based approaches to prioritize
variants genes important for human development and pregnancy, iii) mouse (KOMP, DMDD/MGI) and cell line
knockout studies iv) rare and common disease sequencing studies including Centers for Mendelian Genomics
(CMG), Center for Common Disease Genomics (CCDG) and Pediatric Cardiac Genomics Consortium (PCGC),
iv) emerging human pangenome studies HPP, and v) population-scale biobank projects such as UK BioBank
and All of Us. We will then confirm these predictions via collaborator-led functional studies and retrospective
analyses of RPL first losses, siblings and grandparents. The sharing of early, unpublished data from the Yale
CMG and HPP enabled by our leadership in these projects is a significant strength of what will be by far the
largest and most comprehensive study of RPL performed to date. Our findings will take great strides towards
the goal of comprehensively mapping the human intolerome and will further expand and refine the exploratory
space in which to investigate the genes and chromosomal regions essential for human development.
摘要:大约5%的临床认可妊娠发生了复发性妊娠丧失(RPL)
损失。 RPL的病因没有很好地表征:排除已知病因后,大约一半
有RPL的妇女仍然没有可识别的原因。实际上,RPL经常发生的事实表明了一个强大的
但是,遗传成分目前对对基因组贡献的理解非常有限
rpl。先前的研究通常缺乏设计,受样本量较小,临床不完整的限制
仅表型和/或招募单例。在此提案中,我们提出了招募1000的计划
严格的型RPL三重奏包括来自美国各地的不同和代表性不足的背景
应用WGS和我们实验室开发的复杂变体检测和解释方法来识别
RPL的致病性和可能的致病变异。然后,我们将执行全面的集成数据
分析以定义无法解释的RPL的遗传基础,并绘制染色体的基因和区域
这是人类发展和成功怀孕所必需的。我们的变体解释
管道包括尖端方法,以绘制可能的致病性非编码和结构变体很少
在任何怀孕丧失研究中进行评估。我们还将进行一项试点RNA-seq研究,以评估此功能
在妊娠损失设置中发现基因发现的方法。我们将首先寻找隐性致病性变异,
包括复合杂合性,然后测试新的镶嵌性模型,线粒体突变,
监管非编码变化和整体突变负担。从这些结合分析中,我们希望
发现染色体的基因和区域中的许多变体因功能变异而无法忍受,
我们将其定义为人类的静态组。我们将以我们以前的研究为基础,以绘制磁通膜
结合i)所有临床研究的可用数据来定义无法解释的妊娠的遗传病因
损失,包括本提案中生成的数据以及我们先前的工作,ii)基于网络的方法来优先
对人类发育和妊娠重要的变异基因,iii)小鼠(KOMP,DMDD/MGI)和细胞系
敲除研究IV)罕见和常见的疾病测序研究,包括孟德尔基因组学中心
(CMG),普通疾病基因组学中心(CCDG)和儿科心脏基因组学联盟(PCGC),
iv)新兴的人类pangenome研究HPP和v)人口规模的生物库项目,例如英国生物库
和我们所有人。然后,我们将通过合作者主导的功能研究和回顾性确认这些预测
分析RPL第一损失,兄弟姐妹和祖父母。共享耶鲁大学早期未发表的数据
CMG和HPP由我们在这些项目中的领导才能实现
迄今为止,对RPL的最大,最全面的研究。我们的发现将大步向前
全面绘制人类静态组并将进一步扩展和完善探索的目的
研究基因和染色体区域对人类发育必不可少的空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ira M Hall其他文献
Ira M Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ira M Hall', 18)}}的其他基金
Large scale genome sequencing and integrative analyses to define genomic predictors of recurrent pregnancy loss
大规模基因组测序和综合分析以确定复发性流产的基因组预测因子
- 批准号:
10393656 - 财政年份:2021
- 资助金额:
$ 152.42万 - 项目类别:
The WashU-UCSC-EBI Human Genome Reference Center
华盛顿大学-UCSC-EBI 人类基因组参考中心
- 批准号:
10456056 - 财政年份:2019
- 资助金额:
$ 152.42万 - 项目类别:
The WashU-UCSC-EBI Human Genome Reference Center
华盛顿大学-UCSC-EBI 人类基因组参考中心
- 批准号:
10689153 - 财政年份:2019
- 资助金额:
$ 152.42万 - 项目类别:
A Platform for Large-Scale Discovery in Common Disease
常见疾病大规模发现的平台
- 批准号:
9924136 - 财政年份:2016
- 资助金额:
$ 152.42万 - 项目类别:
Extent, Origin, and Control of Structural Variation in Mammalian Genomes
哺乳动物基因组结构变异的范围、起源和控制
- 批准号:
7852159 - 财政年份:2009
- 资助金额:
$ 152.42万 - 项目类别:
相似国自然基金
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
南海北部“海马”与“F站位”冷泉生物的元素和同位素地球化学特征及其对甲烷来源的示踪
- 批准号:42372161
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
印度洋热液区铁/硫氧化微生物代谢特征及其在硫化物风化过程中的作用
- 批准号:42376133
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
单细胞微藻对硫化汞纳米颗粒的生物富集特征及机制研究
- 批准号:22306108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铝污泥灰混凝土污水管道生物膜中微生物代谢特征及其耐腐蚀机制
- 批准号:52300121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Delineating the Genetic Susceptibility of Smoking-Induced Vascular Dysfunction
描述吸烟引起的血管功能障碍的遗传易感性
- 批准号:
10852366 - 财政年份:2023
- 资助金额:
$ 152.42万 - 项目类别:
Decoding tumor metabolic and immunologic interactions driving racial disparity in African American patients with bladder cancer.
解码肿瘤代谢和免疫相互作用导致非裔美国膀胱癌患者的种族差异。
- 批准号:
10718787 - 财政年份:2023
- 资助金额:
$ 152.42万 - 项目类别:
CF 2: Biostatistics and Bioinformatics Core
CF 2:生物统计学和生物信息学核心
- 批准号:
10932619 - 财政年份:2023
- 资助金额:
$ 152.42万 - 项目类别: