Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
基本信息
- 批准号:10401799
- 负责人:
- 金额:$ 30.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAntineoplastic AgentsBeta-glucuronidaseBiological ModelsChemicalsDataDiarrheaDiclofenacDose-LimitingDrug TargetingDrug ToleranceDrug toxicityEnzymesExcretory functionFecesGastrointestinal tract structureGenerationsGlucuronic AcidsGlucuronidase InhibitorGlucuronidesGlucuronosyltransferaseGoalsHealthHemorrhageHumanIn VitroIndomethacinIntestinesInvestigationKnowledgeLeadLifeLinkLiverMediatingMetabolicMetagenomicsMusNon-Steroidal Anti-Inflammatory AgentsPatientsPerforationPharmaceutical PreparationsPharmacotherapyPhasePlayProcessProteinsProteomicsReactive InhibitionRoleSamplingSmall IntestinesStructureTestingTherapeuticTissuesToxic effectTreatment-related toxicityUlcerWorkXenobioticsbasedrug efficacydrug metabolismgastrointestinalgut microbiomegut microbiotaimprovedin vivoin vivo Modelindividual responseinhibitorinter-individual variationirinotecanmedication safetymicrobialmicrobiomemouse modelnew technologynovel strategiesnovel therapeutic interventionnovel therapeuticspreventresponsesuccesssugartherapy outcome
项目摘要
PROJECT SUMMARY
The human factors involved in drug metabolism are well understood, but the microbial enzymes that play
important roles in this process remain largely uncharacterized. Here we seek to fill this knowledge gap by
focusing on the gut microbial β-glucuronidase (GUS) proteins. GUS enzymes remove the glucuronic acid
moiety that is placed on a wide range of drugs and xenobiotics by human phase II drug metabolizing UDP-
glucuronosyltransferase proteins in the liver and other key metabolic tissues. The conjugation of a glucuronide
to a xenobiotic or drug nearly always inactivates it and very often marks it for elimination via the
gastrointestinal (GI) tract. Gut microbial GUS enzymes can reverse this process and reactivate drugs in the
intestines; as such, they are important drug metabolism enzymes. The reactivation of drug-glucuronides in the
intestines is known to cause the dose-limiting GI toxicity of therapeutics and is suspected to produce inter-
individual variabilities in drug responses. In the last few years, my group has begun to unravel the diversity,
function, and structure of gut microbial GUS enzymes and has developed initial microbiome-targeted inhibitors.
Through these efforts, we are beginning to elucidate the crucial roles these enzymes play in responding to the
xenobiotic- and drug-glucuronides that reach the gut. This proposal focuses on three drugs: the anticancer
chemotherapeutic irinotecan and two non-steroidal anti-inflammatory drugs, diclofenac and indomethacin.
Each is inactivated by glucuronidation and sent to the GI tract for excretion, each is reactivated within the
lumen of the GI tract by gut microbial GUS enzymes, and each reactivated drug causes dose-limiting gut
toxicities. Importantly, we have developed microbiome-targeted inhibitors that reduce, but do not eliminate, the
gut toxicity of these drugs. Considerably more work remains to realize the potential promise of this new
approach to improve human health through targeting the gut microbiome. To enable our success in these
efforts, we have developed a new activity-based probe-enabled proteomics pipeline to identify the gut microbial
GUS enzymes present in mouse and human fecal material. We will use this novel technology to understand at
the protein level how GUS enzymes change upon drug treatment or targeted inhibition. Our overarching
hypothesis is that gut microbial GUS enzymes reactivate a range of structurally distinct drug glucuronide
conjugates and cause GI toxicity, and that these proteins can be inhibited to prevent intestinal damage. We will
test this hypothesis by completing three focused in vitro, proteomics, and in vivo aims. Taken together, the
data we collect will significantly expand our understanding of drug metabolism by the gut microbiota, and will
potentially lead to novel therapeutics to improve human health.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Redinbo其他文献
Matthew R Redinbo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Redinbo', 18)}}的其他基金
Understanding and Controlling Drug Metabolism by the Gut Microbiota to Improve Human Health
了解和控制肠道微生物群的药物代谢以改善人类健康
- 批准号:
10616518 - 财政年份:2020
- 资助金额:
$ 30.47万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10438768 - 财政年份:2019
- 资助金额:
$ 30.47万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10205109 - 财政年份:2019
- 资助金额:
$ 30.47万 - 项目类别:
Structural Basis for Hormone and Neurotransmitter Processing by Gut Microbial Enzymes
肠道微生物酶处理激素和神经递质的结构基础
- 批准号:
10019410 - 财政年份:2019
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8817985 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9326146 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
8931901 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
Improving CPT-11 Efficacy Using Structural and Chemical Biology
利用结构生物学和化学生物学提高 CPT-11 功效
- 批准号:
9128581 - 财政年份:2014
- 资助金额:
$ 30.47万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 30.47万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 30.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 30.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 30.47万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 30.47万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 30.47万 - 项目类别:














{{item.name}}会员




