Role of force regulated nuclear structure in expression of osteogenesis
力调节核结构在成骨表达中的作用
基本信息
- 批准号:10401789
- 负责人:
- 金额:$ 45.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAffectArchitectureBiomechanicsBone MarrowCell LineageCell NucleusCellsChromatinCytoplasmCytoskeletonDNADNA RepairDataEZH2 geneEpigenetic ProcessEuchromatinExerciseF-ActinFocal AdhesionsGene ActivationGene ExpressionGene Expression AlterationGene SilencingGene TargetingGenesGenomeHeterochromatinLamin B1LaminsLinkMarrowMeasuresMechanicsMediatingMesenchymalMesenchymal Stem CellsModelingNatureNuclearNuclear EnvelopeNuclear ImportNuclear PoreNuclear StructureNuclear TranslocationOsteoblastsOsteogenesisPPAR gammaPhysical condensationPolymersPositioning AttributePublishingRegulator GenesRegulatory PathwayRoleSignal PathwaySignal TransductionSmall Interfering RNAStimulusStressStromal CellsStructureTestingVariantbasebeta cateninbonebone marrow mesenchymal stem cellepigenetic regulationexperiencehistone methylationinhibitorknock-downlipid biosynthesisloss of functionmechanical forcemechanical stimulusnovelnuclear transferosteogenicpolymerizationpreventprogramspromoterresponsestemstem cell differentiationstem cell fatestem cellsstemnesstranscription factortranscriptometranscriptome sequencing
项目摘要
Abstract: Role of force regulated nuclear structure in expression of osteogenesis
Bone marrow mesenchymal stem cells (MSC) exist in a multipotential state, where osteogenic
and adipogenic genomes are silenced in heterochromatin at the inner nuclear leaflet. Activating
the osteogenic differentiation program involves multiple regulatory factors, including physical
force, which is generated in the marrow space during dynamic exercise. MSC experience
mechanical force through their cytoskeletal attachments to substrate, inducing signaling that
alters gene expression. We showed that intranuclear actin structures are affected by changes in
the cytoplasmic cytoskeleton, and direct changes in intranuclear actin due to knock down of
nuclear restricted mDia2 (preventing intranuclear actin polymerization) exert profound regulatory
control on gene expression. Further, although both dynamic and static mechanical force activate
RhoA to control formation of the actin cytoskeleton, the nature of these forces appear to have
widely variant effects on gene expression – dynamic force inhibits adipogenesis and promotes
multipotentiality, while static force is associated with osteogenesis. Dynamic versus static
applications may affect gene expression through generating different forces on the nucleus,
affecting nuclear structure and nuclear access of the mechanoresponders, Yap and β-catenin.
We here hypothesize that nuclear structure, modified by force activated actin polymerization,
contributes to selective MSC differentiation and fate. To address this hypothesis, we propose to
define how cellular actin structure resulting from dynamic or static mechanical force differentially
regulate nuclear architecture and gene expression. In SA1 we will find if dynamic and static strain
differentially modify nuclear architecture (F-actin and lamin structure, nucleoli size and spacing,
cell and nuclear stiffness and FISH localization of Runx2). Our data shows that loss of intranuclear
actin polymerization decreases lamin B1 at the inner nuclear leaflet, thus we will find if force alters
osteogenic gene silencing through lamins, and if alterations in formin mDia2 or laminB1 modulate
heterochromatization of the osteogenic genome. In SA2 we will ask if dynamic and static force
differentially regulate nuclear entry of Yap or β-catenin, and relate cytoskeletal stress transfer to
the nuclear membrane to changes in nuclear access of these molecules. Unbiased RNAseq will
allow us to compare gene expression after dynamic vs static force and ask if nuclear Yap and β-
catenin are critical. Lastly in SA3 we determine if intranuclear actin structure directly controls
access to the osteogenic genome. We will define nuclear structure after mDia2 knock down
(decrease intranuclear F-actin, induces osteogenesis), mDia1 knock down (decreasing
cytoplasmic F-actin) and altering secondary actin branching (induces adipogenesis). In these
conditions we will relate nuclear structure to activation of Runx2 and PPARγ cistromes.
Upon completion of our objectives we will be able to establish how mechanical forces and
nuclear actin polymerization control epigenetic induction of osteogenesis and regulate nuclear
transfer of YAP and β-catenin.
摘要:力调节核结构在成骨表达中的作用
骨髓间充质干细胞(MSC)存在于多潜能状态,其中成骨
而成脂基因组在内核小叶的异染色质中沉默。正在激活
成骨分化计划涉及多个调节因素,包括物理因素
力量,这是在动态运动过程中在骨髓空间产生的。MSC体验
通过细胞骨架附着在底物上的机械力,诱导信号
改变基因表达。我们发现,核内肌动蛋白的结构受
胞质细胞骨架和核内肌动蛋白的直接变化
核限制性mDia2(防止核内肌动蛋白聚合)具有深刻的调控作用
对基因表达的控制。此外,尽管动态和静态机械力都被激活
RhoA控制肌动蛋白细胞骨架的形成,这些力量的性质似乎有
基因表达的广泛变异效应-动力抑制脂肪生成并促进脂肪生成
多势性,而静力与成骨有关。动态与静态
应用可能通过在细胞核上产生不同的力来影响基因的表达,
影响机械反应者的核结构和核通路,YAP和β-连环蛋白。
我们在这里假设,通过强制激活的肌动蛋白聚合修饰的核结构,
有助于选择性的MSC分化和命运。为了解决这一假设,我们建议
定义由动态或静态机械力引起的细胞肌动蛋白结构的不同
调控核结构和基因表达。在SA1中,我们将发现动态应变和静态应变
差异修饰核结构(F-肌动蛋白和层蛋白结构,核仁大小和间距,
Runx2的细胞和核硬度及FISH定位。我们的数据显示,核内的损失
肌动蛋白聚合减少了核内小叶的层蛋白B1,因此我们将发现力是否发生变化
成骨基因通过层蛋白沉默,以及如果形成蛋白mDia2或laminB1的改变调节
成骨基因组的异染色化。在SA2中,我们将询问动静态力
差异调节YAP或β-连环蛋白的核进入,并与细胞骨架应力传递相关
核膜对这些分子核内通路的变化。公正的RNAseq将
允许我们比较动态和静态作用力后的基因表达,并询问核YAP和β-
连环蛋白是至关重要的。最后,在SA3中,我们确定核内肌动蛋白结构是否直接控制
获取成骨基因组。我们将在mDia2被击倒后定义核结构
(减少核内F-肌动蛋白,诱导成骨),mDia1基因敲除(减少
细胞质F-肌动蛋白)和改变次级肌动蛋白分支(诱导脂肪生成)。在这些
我们将核结构与Runx2和PPARγ信号通路的激活联系起来。
在我们的目标完成后,我们将能够确定机械力和
核肌动蛋白聚合控制表观遗传诱导成骨和调控核
YAP和β-连环蛋白的转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janet E Rubin其他文献
Janet E Rubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janet E Rubin', 18)}}的其他基金
Role of force regulated nuclear structure in expression of osteogenesis
力调节核结构在成骨表达中的作用
- 批准号:
10632101 - 财政年份:2020
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical regulation of cytoskeleton guides beta-catenin effect on MSC fate
细胞骨架的机械调节引导β-连环蛋白对MSC命运的影响
- 批准号:
8875844 - 财政年份:2015
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical regulation of cytoskeleton guides beta-catenin effect on MSC fate
细胞骨架的机械调节引导β-连环蛋白对MSC命运的影响
- 批准号:
9252230 - 财政年份:2015
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical regulation of cytoskeleton guides beta-catenin effect on MSC fate
细胞骨架的机械调节引导β-连环蛋白对MSC命运的影响
- 批准号:
9460430 - 财政年份:2015
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical regulation of cytoskeleton guides beta-catenin effect on MSC fate
细胞骨架的机械调节引导β-连环蛋白对MSC命运的影响
- 批准号:
9042946 - 财政年份:2015
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical Control of Mesenchymal Stem Cell Lineage Allocation
间充质干细胞谱系分配的机械控制
- 批准号:
8461687 - 财政年份:2010
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical Control of Mesenchymal Stem Cell Lineage Allocation
间充质干细胞谱系分配的机械控制
- 批准号:
8067137 - 财政年份:2010
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical Control of Mesenchymal Stem Cell Lineage Allocation
间充质干细胞谱系分配的机械控制
- 批准号:
8271289 - 财政年份:2010
- 资助金额:
$ 45.32万 - 项目类别:
Mechanical Control of Mesenchymal Stem Cell Lineage Allocation
间充质干细胞谱系分配的机械控制
- 批准号:
7889037 - 财政年份:2010
- 资助金额:
$ 45.32万 - 项目类别:
ORGANIZATION OF MECHANICAL SIGNALS VIA MEMBRANE SCAFFOLD
通过膜支架组织机械信号
- 批准号:
6986682 - 财政年份:2005
- 资助金额:
$ 45.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Research Grant














{{item.name}}会员




