Molecular analysis of nuclear lamin assembly
核纤层组装的分子分析
基本信息
- 批准号:10231281
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAnalytical BiochemistryBehaviorBindingBinding ProteinsBiochemicalBiological AssayCaliberCell NucleusCell physiologyCellsCellular StructuresCellular biologyChromatinChromosomesComplexCrude ExtractsCytoplasmCytoprotectionDNADataDiseaseES Cell LineElectron MicroscopyEmbryologyExcisionFilamentFluorescence MicroscopyFoundationsGene ExpressionGenesGenomeGeometryGoalsHumanImageImportinsIn VitroInstitutionIntermediate Filament ProteinsIntermediate FilamentsInterphaseInterphase CellInvestigationKnock-outKnowledgeLaboratoriesLaminsLightMeasuresMechanicsMicrofilamentsMicrotubulesModelingMolecularMolecular AnalysisMonomeric GTP-Binding ProteinsMusMutant Strains MiceMutationNuclearNuclear EnvelopeNuclear LaminNuclear LaminaNuclear Pore ComplexNuclear StructureNucleoplasmPathway interactionsPhysiologicalPlayPolymersPropertyProtein IsoformsProteinsReactionRecombinantsRegulationResearchRoleScienceSignal TransductionSourceStructureSystemTestingTrainingVisualizationWorkWritingXenopusXenopus laeviscollaborative environmentdisease-causing mutationeggembryonic stem cellestablished cell lineexperimental studygenome editingin vitro Assayin vivoinsightmutantnovelnull mutationphysical insultreconstitutionscaffoldstem cells
项目摘要
Project Summary
Lamin filaments are central structural organizers of the metazoan nucleus. They contribute to nuclear function
by controlling nuclear structure, separating the nucleoplasm from the cytoplasm and organizing the genome into
differentially regulated subdomains. Many diseases are associated with lamin dysregulation and abnormal
nuclear structure, underscoring the importance of these molecules. Despite the importance of lamins in normal
nuclear function, molecular mechanisms controlling lamin assembly are poorly understood. Previous studies
attempted to dissect lamin assembly using recombinant lamin proteins purified under denaturing conditions and
simultaneously refolded and assembled into filamentous structures through removal of denaturant. It is now clear
that the lamin structures assembled in these experiments do not resemble lamin filaments in cells. The goal of
this proposal is to develop experimental systems for studying physiological lamin assembly and to determine the
assembly pathway and mechanism of lamin assembly. The research is expected to extend understanding of
nuclear structure and function, and of diseases associated with dysregulation of nuclear structure and function.
The proposed experiments aim to uncover molecular mechanisms of lamin assembly. In vitro
experiments will be conducted in Xenopus laevis egg extracts, which contain their own soluble lamin protein,
eliminating the need for recombinant lamins in assembly assays. Xenopus egg extracts can assemble diverse
lamin structures. By varying assembly conditions and studying these lamin assemblies using fluorescence and
electron microscopy, cellular structures and signals that control lamin assembly will be identified. Using analytical
biochemistry, the soluble lamin subunit will be characterized, along with any proteins that are in a stable complex
with the soluble lamin subunit. Importin and are known binding partners of soluble lamin in Xenopus egg
extract. Proposed experiments will determine how importins and other lamin-binding proteins regulate lamin
assembly. In vivo experiments will be conducted in genome edited stem cells. Mouse embryonic stem cells with
the genes encoding all three lamin isoforms knocked out have been isolated and propagated by the host lab.
Inducibly expressing fluorescently tagged lamin in these cells is predicted to result in nascent lamin meshwork
assembly, allowing visualization of the succession of lamin assembly using fluorescence and electron
microscopy. By comparing assembly of fluorescently tagged lamin mutants to assembly of wild type lamins, the
research will determine whether the lamin assembly pathway is altered by disease-causing lamin mutations.
The research proposed will be conducted in the laboratory of Dr. Yixian Zheng at the Carnegie Institution
for Science Department of Embryology. Research will be carried out independently with biweekly guidance
provided by Dr. Zheng. Experimental training, along with training in science writing and presentation, will be
accomplished through one-on-one interactions between Dr. Zheng and the trainee and through participation in
the collegial, collaborative, and interactive environment of the Carnegie Institution.
项目摘要
层层丝是后生核核的中心结构组织者。它们有助于核功能
通过控制核结构,将核等离子体与细胞质分开并将基因组组织到
不同监管的子域。许多疾病与层固定失调和异常有关
核结构,强调了这些分子的重要性。尽管lamins在正常状态下很重要
核功能,控制层固定组件的分子机制知之甚少。先前的研究
试图使用在变性条件下纯化的重组层粘连蛋白剖析层固定组件
通过去除变性剂,类似地重折叠并组装成丝状结构。现在很清楚
这些实验中组装的层固定结构与细胞中的层粘膜丝不同。目标
该建议是开发用于研究物理层粘连蛋白组装的实验系统,并确定
层固定组件的组装途径和机制。期望这项研究扩展对
核结构和功能,以及与核结构和功能失调相关的疾病。
提出的实验旨在发现层粘连蛋白组装的分子机制。体外
实验将在包含自己的固体层层蛋白蛋白的爪蟾laevis卵提取物中进行
消除了组装测定中重组层粘连的需求。爪蟾鸡蛋提取物可以组装多样
层粘连结构。通过改变装配条件并使用荧光和
将确定控制层固定组件的电子显微镜,细胞结构和信号。使用分析
生物化学,可溶性层lamin亚基将被表征,以及稳定复合物中的任何蛋白质
与可溶性层固定亚基。 Importin和是可溶性层粘连蛋白的已知结合伴侣
提炼。提出的实验将确定进口蛋白和其他层粘连蛋白结合蛋白如何调节层粘连蛋白
集会。体内实验将在基因组编辑的干细胞中进行。小鼠胚胎干细胞与
编码所有三种层粘连同工型的基因已被宿主实验室分离并传播。
预计这些细胞中诱导表达荧光标记的层蛋白会导致新生的层粘连蛋白网格
组装,允许使用荧光和电子的层粘连组件成功可视化
显微镜。通过比较荧光标记的层固定突变体与野生型层状的组装的组装,
研究将确定层粘连组件途径是否因引起疾病的层固定突变而改变。
提出的研究将在卡内基机构的Yixian Zheng博士实验室进行
科学胚胎学系。研究将独立进行双周指导
由Zheng博士提供。实验培训以及科学写作和演讲培训将是
通过Zheng博士和实习生之间的一对一互动以及参与
卡内基机构的合作,合作和互动环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross T Pedersen其他文献
Ross T Pedersen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross T Pedersen', 18)}}的其他基金
相似国自然基金
基于丝网印刷功能化电极阵列研究活性氧分子在恶性黑色素瘤细胞药物治疗中的变化与作用
- 批准号:21605110
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向连续动态血糖监测的无酶型多孔M@Pt基电化学微纳传感界面设计与构筑
- 批准号:21605061
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
现场快速电化学传感器构建及环境污染生物标志物检测
- 批准号:21575123
- 批准年份:2015
- 资助金额:80.0 万元
- 项目类别:面上项目
离子传感微流控芯片的制备及水质分析应用
- 批准号:21575136
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
纳米尺度空间生物化学发光传感及其在微区分析中的应用研究
- 批准号:20575040
- 批准年份:2005
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the role of olfactory communication through brown bear marking behavior
通过棕熊标记行为了解嗅觉交流的作用
- 批准号:
22K06393 - 财政年份:2022
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the Sources and Behavior for Particulate Trace Metals in the Oceans Based on Stable Isotope Ratio Analysis
基于稳定同位素比分析的海洋中颗粒状痕量金属的来源和行为研究
- 批准号:
20K19957 - 财政年份:2020
- 资助金额:
$ 6.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
- 批准号:
10592636 - 财政年份:2019
- 资助金额:
$ 6.6万 - 项目类别: