Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
基本信息
- 批准号:10231115
- 负责人:
- 金额:$ 41.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAsiaBasal CellBasal cell carcinomaCancer cell lineCase StudyCell LineCodeCommunitiesComputing MethodologiesDataData AnalysesData SetDatabasesDevelopmentDiffuse intrinsic pontine gliomaDiseaseDisease modelDrug ModelingsDrug ScreeningDrug TargetingEvaluationEwings sarcomaGene ExpressionGene Expression ProfileGenerationsGenesGenotypeGenotype-Tissue Expression ProjectGoalsHealthHeterogeneityIndividualInformaticsInformation SystemsMalignant Childhood NeoplasmMalignant NeoplasmsMethodsMichiganModelingMolecularMultiple Organ FailureNormal tissue morphologyPharmaceutical PreparationsPharmacotherapyPhysiciansPre-Clinical ModelPrimary carcinoma of the liver cellsProceduresQuality ControlRampRare DiseasesResearchResearch PersonnelResourcesSamplingScientistSystemThe Cancer Genome AtlasTherapeuticTherapeutic AgentsTissuesTranslatingTranslational ResearchUniversitiesValidationWeightWorkplacebasecancer gene expressionclinically relevantcomputer sciencecostdata modelingdeep learningdisease classificationdisorder controldrug candidatedrug mechanismhigh dimensionalityimprovedinsightinterestlarge scale datalearning strategymodel developmentmouse modelnew therapeutic targetnext generation sequencingnovelnovel therapeuticsopen dataoverexpressionpillprotein metabolitestatisticssuccesstherapeutic candidatetherapeutic targettranscriptome sequencing
项目摘要
Project Summary/Abstract
Many diseases are understudied because they are rare or of little public interest. The effect of each understudied
disease may be limited, but the cumulative effects of all these diseases could be profound. One common
research challenge for these diseases is that the resources allocated to each is often limited. For instance, large-
scale screening of drugs is often challenging, if not possible, in small labs. The decreasing costs of next
generation sequencing make possible the generation of gene expression profiles of understudied disease
samples. Integrating these expression profiles with other open data provides tremendous opportunities to gain
insights into disease mechanisms and identify new therapeutics for understudied diseases. We have utilized a
systems-based approach that employs gene expression profiles of disease samples and drug-induced gene
expression profiles from cancer cell lines to predict new therapeutic candidates for hepatocellular carcinoma,
Ewing sarcoma and basal cell carcinoma. All these candidates were successfully validated in preclinical models.
The success of this approach relies on multiscale procedures, such as quality control of disease samples,
selection of appropriate reference tissues, evaluation of disease signatures, and weighting cell lines. There is a
plethora of relevant datasets and analysis modules that are publicly available, yet are isolated in distinct silos,
making it tedious to implement this approach in translational research. A centralized informatics system that
allows prediction of therapeutics for further experimental validation is thus of great interest to researchers
working on understudied diseases. Accordingly, we propose four specific aims: 1) developing novel deep
learning methods to select precise reference normal tissues for disease signature creation, 2) developing
computational methods to reuse drug profiles from other disease models for drug prediction, 3) integrating open
efficacy data to identify new targets from the systems-based approach, and 4) developing a centralized platform
and promoting the platform in the scientific community. This proposal will reuse several big open databases (e.g.,
TCGA, TARGET, GTEx, GEO, LINCS, CTRP, GDSC) and employ cutting-edge informatics methods (e.g., deep
learning). To demonstrate the scalability of the system, we will investigate three representative understudied
diseases: multiple organ dysfunction syndrome (Aim 1), diffuse intrinsic pontine glioma (Aim 2) and
hepatocellular carcinoma (Aim 3). Successful implementation of the systems-based approach can be used as a
model for using other large open omics (proteins, metabolites) to discover therapeutics for diseases with unmet
needs. This proposal will bring together experts in informatics, statistics, computer science, and physicians from
Michigan State University, Stanford University, UC Berkeley and Spectrum Health. All data and code will be
released to the public for continuing development. The system will be deployed to our OCTAD portal
(http://octad.org), an open workplace for therapeutic discovery.
项目摘要/摘要
许多疾病都没有得到充分的研究,因为它们很罕见,或者与公众兴趣不大。每一个未被研究的人的影响
疾病可能是有限的,但所有这些疾病的累积影响可能是深远的。一个共同之处
这些疾病的研究挑战在于,分配给每种疾病的资源往往是有限的。例如,大型-
在小型实验室中,大规模筛选药物往往是具有挑战性的,如果不可能的话。Next的成本不断降低
世代测序使未被研究的疾病的基因表达谱的生成成为可能
样本。将这些表情配置文件与其他开放数据集成可提供巨大的机会
对疾病机制的洞察和为未被研究的疾病确定新的治疗方法。我们已经利用了一个
基于系统的方法,利用疾病样本和药物诱导基因的基因表达谱
肿瘤细胞系的表达谱预测新的肝细胞癌治疗候选者
尤文肉瘤和基底细胞癌。所有这些候选者都在临床前模型中得到了成功的验证。
这种方法的成功依赖于多尺度的程序,如疾病样本的质量控制,
选择合适的参考组织,评估疾病特征,并对细胞系进行加权。有一个
过多的相关数据集和分析模块是公开可用的,但被隔离在不同的竖井中,
这使得在翻译研究中实施这种方法变得单调乏味。一个集中的信息学系统,
因此,允许进一步的实验验证的治疗预测是研究人员非常感兴趣的
致力于研究未被研究的疾病。据此,我们提出了四个具体目标:1)深度发展小说
选择精确参考正常组织的学习方法,用于创建疾病征兆,2)发展
重复使用其他疾病模型中的药物分布用于药物预测的计算方法,3)集成开放的
功效数据,以从基于系统的方法中确定新的目标,以及4)开发一个集中平台
并在科学界推广该平台。该提议将重复使用几个大型开放数据库(例如,
TCGA、TARGET、GTEx、GEO、LINCS、CTRP、GDSC),并采用尖端信息学方法(例如
学习)。为了证明系统的可扩展性,我们将调查三个正在研究中的有代表性的
疾病:多器官功能障碍综合征(AIM 1)、弥漫性固有桥脑胶质瘤(AIM 2)和
肝细胞癌(目标3)。成功实施基于系统的方法可以作为一种
使用其他大型开放组学(蛋白质、代谢物)发现治疗非MET疾病的方法的模型
需要。这项提案将把信息学、统计学、计算机科学方面的专家和来自
密歇根州立大学、斯坦福大学、加州大学伯克利分校和Spectrum Health。所有数据和代码都将
向公众发布,以供继续开发。该系统将部署到我们的OCTAD门户
(http://octad.org),是一个开放的治疗发现工作场所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Chen其他文献
Bin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Chen', 18)}}的其他基金
virtual compound screening using gene expression
使用基因表达进行虚拟化合物筛选
- 批准号:
10418186 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
virtual compound screening using gene expression
使用基因表达进行虚拟化合物筛选
- 批准号:
10673837 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
A postdoctoral training program for impactful careers in stem cell biology
干细胞生物学领域有影响力的职业博士后培训计划
- 批准号:
10592329 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Drug biomarker resources for precise translational research
用于精准转化研究的药物生物标志物资源
- 批准号:
10056488 - 财政年份:2020
- 资助金额:
$ 41.63万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10461787 - 财政年份:2019
- 资助金额:
$ 41.63万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10704561 - 财政年份:2019
- 资助金额:
$ 41.63万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10669357 - 财政年份:2019
- 资助金额:
$ 41.63万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10713005 - 财政年份:2019
- 资助金额:
$ 41.63万 - 项目类别:
Integrating transcriptomic, proteomic and pharmacogenomic data to inform individualized therapy in cancers
整合转录组学、蛋白质组学和药物基因组学数据,为癌症个体化治疗提供信息
- 批准号:
9925076 - 财政年份:2018
- 资助金额:
$ 41.63万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




